Difference between revisions of "ContourPlot1"
Paultpearson (talk | contribs) (Add link to PGML version in OPL) |
m (Removal of non-PGML link.) |
||
Line 5: | Line 5: | ||
This PG code shows how to construct a contour plot with a color gradient. |
This PG code shows how to construct a contour plot with a color gradient. |
||
</p> |
</p> |
||
− | * File location in OPL: [https://github.com/openwebwork/webwork-open-problem-library/blob/master/OpenProblemLibrary/FortLewis/Authoring/Templates/DiffCalcMV/ContourPlot1.pg FortLewis/Authoring/Templates/DiffCalcMV/ContourPlot1.pg] |
+ | <!-- * File location in OPL: [https://github.com/openwebwork/webwork-open-problem-library/blob/master/OpenProblemLibrary/FortLewis/Authoring/Templates/DiffCalcMV/ContourPlot1.pg FortLewis/Authoring/Templates/DiffCalcMV/ContourPlot1.pg] --> |
− | * PGML location in OPL: [https://github.com/openwebwork/webwork-open-problem-library/blob/master/OpenProblemLibrary/FortLewis/Authoring/Templates/DiffCalcMV/ |
+ | * PGML location in OPL: [https://github.com/openwebwork/webwork-open-problem-library/blob/master/OpenProblemLibrary/FortLewis/Authoring/Templates/DiffCalcMV/ContourPlot1_PGML.pg FortLewis/Authoring/Templates/DiffCalcMV/ContourPlot1_PGML.pg] |
<br clear="all" /> |
<br clear="all" /> |
||
Line 16: | Line 16: | ||
<tr valign="top"> |
<tr valign="top"> |
||
− | <th> PG problem file </th> |
+ | <th style="width: 50%"> PG problem file </th> |
<th> Explanation </th> |
<th> Explanation </th> |
||
</tr> |
</tr> |
||
Line 68: | Line 68: | ||
<td style="background-color:#ffffdd;border:black 1px dashed;"> |
<td style="background-color:#ffffdd;border:black 1px dashed;"> |
||
<pre> |
<pre> |
||
+ | $refreshCachedImages=1; |
||
+ | $showPartialCorrectAnswers = 0; |
||
+ | |||
+ | |||
+ | ################################## |
||
+ | # Set-up |
||
+ | |||
Context("Numeric")->variables->are(t=>"Real",x=>"Real",y=>"Real"); |
Context("Numeric")->variables->are(t=>"Real",x=>"Real",y=>"Real"); |
||
# |
# |
||
− | # Create |
+ | # Create some graph canvases |
# |
# |
||
$gr = init_graph(-5,-5,5,5,axes=>[0,0],pixels=>[300,300]); |
$gr = init_graph(-5,-5,5,5,axes=>[0,0],pixels=>[300,300]); |
||
Line 109: | Line 116: | ||
255,255,255 # RGB white |
255,255,255 # RGB white |
||
); |
); |
||
+ | |||
# |
# |
||
Line 125: | Line 133: | ||
$fn->weight(1); |
$fn->weight(1); |
||
} |
} |
||
+ | |||
# |
# |
||
Line 143: | Line 152: | ||
$gr->lb( new Label(0.707*sqrt($k),0.707*sqrt($k),$k,'black','center','middle')); |
$gr->lb( new Label(0.707*sqrt($k),0.707*sqrt($k),$k,'black','center','middle')); |
||
} |
} |
||
+ | |||
$pop = PopUp(["Choose","True","False"],"False"); |
$pop = PopUp(["Choose","True","False"],"False"); |
||
Line 163: | Line 173: | ||
<td style="background-color:#ffdddd;border:black 1px dashed;"> |
<td style="background-color:#ffdddd;border:black 1px dashed;"> |
||
<pre> |
<pre> |
||
− | Context()->texStrings; |
||
+ | BEGIN_PGML |
||
− | BEGIN_TEXT |
||
+ | [@ $pop->menu() @]* This could be a contour plot for [` f(x,y) = x^2 - y^2 `]. |
||
− | \{ $pop->menu() \} This could be a contour plot |
||
+ | |||
− | for \( f(x,y) = x^2 - y^2 \). |
||
+ | >> [@ image(insertGraph($gr),width=>300,height=>300,tex_size=>450) @]* << |
||
− | $BR |
||
+ | END_PGML |
||
− | $BCENTER |
||
− | \{ image(insertGraph($gr),width=>300,height=>300,tex_size=>450) \} |
||
− | $ECENTER |
||
− | END_TEXT |
||
− | Context()->normalStrings; |
||
</pre> |
</pre> |
||
<td style="background-color:#ffcccc;padding:7px;"> |
<td style="background-color:#ffcccc;padding:7px;"> |
Revision as of 06:45, 11 March 2023
Contour Plots with a Color Gradient
This PG code shows how to construct a contour plot with a color gradient.
- PGML location in OPL: FortLewis/Authoring/Templates/DiffCalcMV/ContourPlot1_PGML.pg
PG problem file | Explanation |
---|---|
Problem tagging: |
|
DOCUMENT(); loadMacros( "PGstandard.pl", "MathObjects.pl", "PGgraphmacros.pl", "parserPopUp.pl", ); TEXT(beginproblem()); $refreshCachedImages = 1; |
Initialization:
We will use |
$refreshCachedImages=1; $showPartialCorrectAnswers = 0; ################################## # Set-up Context("Numeric")->variables->are(t=>"Real",x=>"Real",y=>"Real"); # # Create some graph canvases # $gr = init_graph(-5,-5,5,5,axes=>[0,0],pixels=>[300,300]); $gr->lb('reset'); $gr->lb( new Label(4.7,0.2,'x','black','center','middle')); $gr->lb( new Label(0.2,4.7,'y','black','center','middle')); # # A subroutine for adding the color gradient to the graph object # sub makegradient # ($graph, $steps, $r0, $g0, $b0, $r1, $g1, $b1) { my ($graph, $steps, $r0, $g0, $b0, $r1, $g1, $b1) = @_; my $dr = ($r1 - $r0) / $steps; my $dg = ($g1 - $g0) / $steps; my $db = ($b1 - $b0) / $steps; my $r = $r0; my $g = $g0; my $b = $b0; for my $i (0..$steps-1) { $graph->new_color("gradient$i",$r,$g,$b); $r += $dr; $g += $dg; $b += $db; } return $graph; } # # Add to $gr a 10 step color gradient # $gr = &makegradient($gr, 10, 0,0,225, # RGB blue 255,255,255 # RGB white ); # # Circular contours as parametrized curves # foreach my $k (5,10,15,20,25,30,35,40,45) { my $a = sqrt($k); $fn = new Fun( Formula("$a*cos(t)")->perlFunction, Formula("$a*sin(t)")->perlFunction, $gr ); $fn->domain(0,6.3); $fn->color("gray"); $fn->steps(60); $fn->weight(1); } # # Fill with gradient colors between contours # foreach my $i (0..9) { my $a = sqrt(2)/2 * sqrt(5*$i) - 0.1; $gr->fillRegion([ $a, $a, "gradient$i"]); $gr->fillRegion([-$a, $a, "gradient$i"]); $gr->fillRegion([-$a,-$a, "gradient$i"]); $gr->fillRegion([ $a,-$a, "gradient$i"]); } # # Label the contours # foreach my $k (5,15,25,35,45) { $gr->lb( new Label(0.707*sqrt($k),0.707*sqrt($k),$k,'black','center','middle')); } $pop = PopUp(["Choose","True","False"],"False"); |
Setup:
By default, graph objects only know a few named colors, so if you want to have a color gradient, you'll need to add a bunch of named colors to the graph. The Unfortunately, we have to do everything manually, including constructing the contour curves as parametric curves, filling the spaces between curves with colors from the color gradient, and labeling each contour curve. |
BEGIN_PGML [@ $pop->menu() @]* This could be a contour plot for [` f(x,y) = x^2 - y^2 `]. >> [@ image(insertGraph($gr),width=>300,height=>300,tex_size=>450) @]* << END_PGML |
Main Text: We ought to have asked a more interesting question. |
$showPartialCorrectAnswers = 0; ANS( $pop->cmp() ); |
Answer Evaluation: |
Context()->texStrings; BEGIN_SOLUTION Solution explanation goes here. END_SOLUTION Context()->normalStrings; COMMENT('MathObject version.'); ENDDOCUMENT(); |
Solution: |