Difference between revisions of "ModelCourses/Calculus/Vectors/Vectors in Space"

From WeBWorK_wiki
Jump to navigation Jump to search
Line 2: Line 2:
   
 
* Vector Algebra
 
* Vector Algebra
** The right-handed coordinate system
+
** The right-handed coordinate system, three axes, three coordinate planes and eight octants
  +
*** Sketching a point in space
  +
*** Sketching a line that passes through a given point and is parallel to an axis
  +
*** Sketching a plane that contains a point and is parallel to a given
 
** Expressing a vector from Point A to Point B in vector notation
 
** Expressing a vector from Point A to Point B in vector notation
 
*** Sketching a position vector
 
*** Sketching a position vector

Revision as of 18:44, 21 December 2011

Vectors in Space

  • Vector Algebra
    • The right-handed coordinate system, three axes, three coordinate planes and eight octants
      • Sketching a point in space
      • Sketching a line that passes through a given point and is parallel to an axis
      • Sketching a plane that contains a point and is parallel to a given
    • Expressing a vector from Point A to Point B in vector notation
      • Sketching a position vector
    • Vector algebra: (1) scalar multiplication; (2) vector addition and subtraction
      • Computing and sketching a scalar times a vector and a sum (difference) of two vectors
    • Triangle inequality
  • The Dot Product of Two Vectors and Applications
    • Two definitions of dot product of two vectors
    • Angle of two vectors
      • Computing the dot product of two vectors
      • Computing the angle between two vectors
      • Determining if two vectors are parallel or orthogonal (perpendicular) when cosine of the angle is 1, -1, or 0
      • Determining if the angle of two vectors is acute, or obtuse when the dot product of two vectors is positive or negative
      • Given a vector u, create a vector that is parallel to u
      • Given a vector u, create a vector that is orthogonal to u
      • Given a vector u and an angle theta, create a vector v such that the angle of u and v is theta
    • Projection of vector u onto vector v
      • Work done by a force vector along a direction vector
  • The Cross Product of Two Vectors in Space and Applications
    • Calculating the standard collection of numerical examples
    • Orthogonality
      • Given a vector, determine another vector which is orthogonal
    • Orthogonality between three vectors
      • Given two vectors, determine a vector which is normal

Download the set definition file for this problem set

ModelCourses/Multivariate Calculus