ModelCourses/Multivariate Calculus
Contents
Multivariate Calculus Model Course Units
- Mei Qin Chen, Dick Lane and John Travis
- Breaking "courses" first into units and finding appropriate content for them. Then, package these units as appropriate to fit various calculus breakdown models. However, it appears that most calculus courses cover similar topics in some order.
- Many software packages are available and can be used from within Webwork.
- Idea is to create a course table of content for each subject area and link problems to that table instead of particular textbooks. Then, develop textbook models that draw from those problems instead of having problems that draw from particular textbooks.
- A rubric needs to be developed that helps instructors determine the hardness level of a particular problem.
Typical Table of Contents
By this time in calculus, there is no difference between regular versus early transcendentals.
Vectors and the Geometry of Space
- Space Coordinates and Vectors in Space
- The Dot Product of Two Vectors
- The Cross Product of Two Vectors in Space
- Lines and Planes in Space
- Section Project: Distances in Space
- Surfaces in Space
- Cylindrical and Spherical Coordinates
Vector Functions
- Vector Functions and Space Curves
- Derivatives and Integrals of Vector Functions
- Arc Length and Curvature
- Unit Tangent and Unit Normal vectors
* Computing T(t) * Computing N(t) * Computing T(t) and N(t) and other stuff in one problem * Computing equation of osculating circle
- Motion in Space: Velocity and Acceleration
- Applications.
Partial Derivatives
- Unit 1 - Model Course - Calculus - Partial Derivatives - Definition
* Functions of Several Variables and Level Curves * Limits and Continuity * Partial Derivatives by Definition
- Unit 2 - Model Course - Calculus - Partial Derivatives - Rules
* Partial Derivatives using Rules * The Chain Rule * Directional Derivatives and the Gradient Vector
- Unit 3 - Model Course - Calculus - Partial Derivatives - Applications
* Tangent Planes and Linear Approximations * Maximum and Minimum Values * Lagrange Multipliers
Multiple Integrals
- Unit 1 - Model Course - Calculus - Double Integrals Rectangular
* Iterated Integrals * Setting up Double Integrals over General Regions * Applications of Double Integrals in Rectangular Coordinates
- Unit 2 - Model Course - Calculus - Double Integral Polar
* Double Integrals in Polar Coordinates * Applications of Double Integrals in Polar Coordinates
- Unit 3 - Model Course - Calculus - Triple Integrals
* Triple Integrals * Triple Integrals in Cylindrical Coordinates * Triple Integrals in Spherical Coordinates * Change of Variables in Multiple Integrals
Vector Calculus
- Vector Fields
- Line Integrals
- The Fundamental Theorem for Line Integrals
- Green's Theorem
- Curl and Divergence (sometimes optional due to time constraints)
- Parametric Surfaces and Areas (sometimes optional due to time constraints)
- Surface Integrals (sometimes optional due to time constraints)
- Stokes' Theorem (often optional)
- The Divergence Theorem (often optional)