IndefiniteIntegrals1
Indefinite Integrals and General Antiderivatives
This PG code shows how to check answers that are indefinite integrals or general antiderivatives.
- Download file: File:IndefiniteIntegrals1.txt (change the file extension from txt to pg when you save it)
- File location in NPL:
NationalProblemLibrary/FortLewis/Authoring/Templates/IntegralCalc/IndefiniteIntegrals1.pg
PG problem file | Explanation |
---|---|
Problem tagging: |
|
DOCUMENT(); loadMacros( "PGstandard.pl", "MathObjects.pl", "AnswerFormatHelp.pl", "parserFormulaUpToConstant.pl", ); TEXT(beginproblem()); |
Initialization: |
Context("Numeric"); $specific = Formula("e^x"); $general = FormulaUpToConstant("e^x"); |
Setup:
The specific antiderivative should mark correct answers such as
The specific antiderivative is an ordinary formula, and we check this answer, we will specify that it be a formula evaluated up to a constant (see the Answer Evaluation section below). For the general antiderivative, we use the |
Context()->texStrings; BEGIN_TEXT Enter a specific antiderivative for \( e^x \): \{ ans_rule(20) \} \{ AnswerFormatHelp("formulas") \} $BR $BR Enter the most general antiderivative for \( e^x \): \{ ans_rule(20) \} \{ AnswerFormatHelp("formulas") \} END_TEXT Context()->normalStrings; |
Main Text: |
$showPartialCorrectAnswers = 1; ANS( $specific->cmp(upToConstant=>1) ); ANS( $general->cmp() ); |
Answer Evaluation:
For the specific antiderivative, we must use |
Context()->texStrings; BEGIN_SOLUTION ${PAR}SOLUTION:${PAR} Solution explanation goes here. END_SOLUTION Context()->normalStrings; COMMENT('MathObject version.'); ENDDOCUMENT(); |
Solution: |