ExplicitSequence1
Jump to navigation
Jump to search
Sequences with Explicit Formulas
This PG code shows how to evaluate answers that are (possibly alternating) sequences with explicit formulas.
- Download file: File:Sequences2.txt (change the file extension from txt to pg when you save it)
- File location in NPL:
NationalProblemLibrary/FortLewis/Authoring/Templates/IntegralCalc/Sequences2.pg
PG problem file | Explanation |
---|---|
Problem tagging: |
|
DOCUMENT(); loadMacros( "PGstandard.pl", "MathObjects.pl", "AnswerFormatHelp.pl", ); TEXT(beginproblem()); |
Initialization: |
Context("Numeric"); Context()->variables->are(n=>"Real"); $answer = Compute("(-1)^n / n!"); $answer->{test_points} = [[1],[2],[3],[4],[5],[6]]; @seq = ( "a_0 = 1", "a_1 = -1", "a_2 = \frac{1}{2}", "a_3 = -\frac{1}{6}", "a_4 = \frac{1}{24}", "a_5 = -\frac{1}{120}", "\ldots" ); $sequence = join(", ", @seq); |
Setup:
We set the test points to be positive integers to avoid errors when evaluating the answer. We create an array of strings |
Context()->texStrings; BEGIN_TEXT Find a formula for \( n^{th} \) term of the sequence \( $sequence \). $BR $BR \( a_n = \) \{ ans_rule(20) \} \{ AnswerFormatHelp("formulas") \} END_TEXT Context()->normalStrings; |
Main Text: |
$showPartialCorrectAnswers = 1; ANS( $answer->cmp() ); |
Answer Evaluation: |
Context()->texStrings; BEGIN_SOLUTION ${PAR}SOLUTION:${PAR} Solution explanation goes here. END_SOLUTION Context()->normalStrings; COMMENT('MathObject version.'); ENDDOCUMENT(); |
Solution: |