Difference between revisions of "Sage in WeBWorK"

From WeBWorK_wiki
Jump to navigation Jump to search
Line 1: Line 1:
  +
Sage is an open source, online symbolic mathematical system. Details on Sage can be found at http://www.sagemath.org .
   
  +
For use within WebWork, a special "single-cell" version of Sage is located at
  +
  +
## First Homework Problem File for
  +
## Calculus
  +
## Partial Derivatives
  +
## Unit 1
  +
##
  +
  +
DOCUMENT();
  +
  +
loadMacros(
  +
"PGstandard.pl",
  +
"PGchoicemacros.pl",
  +
"MathObjects.pl",
  +
);
  +
  +
Context()->strings->add(none=>{});
  +
  +
TEXT(beginproblem());
  +
  +
$x0 = non_zero_random(-2,2,1);
  +
$y0 = non_zero_random(-2,2,1);
  +
  +
$f0 = ($x0**3-$y0**3)/($x0**2+$y0**2+1);
  +
  +
TEXT(<<EOF);
  +
<div id="singlecell-test"><script type="text/code">
  +
  +
  +
######### Sage code pasted starting here ##########
  +
  +
var('x,y,t,s')
  +
  +
#
  +
  +
M=x*y
  +
N=-y
  +
  +
@interact(layout=dict(left= [['x0'],['y0'],['delx'],['dely']],
  +
bottom=[['xx'],['yy']]))
  +
def _( x0 = input_box(0,width=5,label='$x_0$'),
  +
y0 = input_box(0,width=5,label='$y_0$'),
  +
delx = input_box(1,width=5,label='$\Delta{x}$'),
  +
dely = input_box(1,width=5,label='$\Delta{y}$'),
  +
xx = range_slider(-5, 5, 1, default=(-2,2), label='x Range'),
  +
yy = range_slider(-5, 5, 1, default=(-1,3), label='y Range')):
  +
  +
G = plot_vector_field((M,N),(x,xx[0],xx[1]),(y,yy[0],yy[1]),aspect_ratio=true)
  +
G += arrow((x0,y0),(x0+delx,y0+dely))
  +
show(G)
  +
  +
  +
############## End of Sage Code ######################
  +
  +
  +
</script></div>
  +
  +
<script type="text/javascript" src="http://sagemath.org:5467/static/jquery-1.5.min.js"></script>
  +
<script type="text/javascript" src="http://sagemath.org:5467/embedded_singlecell.js"></script>
  +
  +
<script type="text/javascript">
  +
$(function() { // load only when the page is loaded
  +
var makecells = function() {
  +
singlecell.makeSinglecell({
  +
inputLocation: "#singlecell-test",
  +
editor: "codemirror",
  +
hide: ["editor","computationID","files","messages","sageMode"],
  +
evalButtonText: "Start/Restart",
  +
replaceOutput: true});
  +
}
  +
  +
singlecell.init(makecells); // load Single Cell libraries and then
  +
// initialize Single Cell instances
  +
  +
});
  +
</script>
  +
EOF
  +
  +
############### Below is the normal WebWork pg stuff #####################
  +
  +
Context()->texStrings;
  +
BEGIN_TEXT
  +
Using the contour plot below, determine the range value of the illustrated function at \( ($x0,$y0) \).
  +
$BR $BR
  +
\( f($x0,$y0) = \)\{ ans_rule(15) \}
  +
$PAR
  +
END_TEXT
  +
Context()->normalStrings;
  +
  +
  +
# need to add reasonable approximation error of about 0.1 or so.
  +
ANS( Compute($f0)->cmp() );
  +
  +
  +
  +
ENDDOCUMENT(); # This should be the last executable line in the problem.
  +
   
   

Revision as of 16:26, 30 December 2011

Sage is an open source, online symbolic mathematical system. Details on Sage can be found at http://www.sagemath.org .

For use within WebWork, a special "single-cell" version of Sage is located at

    1. First Homework Problem File for
    2. Calculus
    3. Partial Derivatives
    4. Unit 1

DOCUMENT();

loadMacros( "PGstandard.pl", "PGchoicemacros.pl", "MathObjects.pl", );

Context()->strings->add(none=>{});

TEXT(beginproblem());

$x0 = non_zero_random(-2,2,1); $y0 = non_zero_random(-2,2,1);

$f0 = ($x0**3-$y0**3)/($x0**2+$y0**2+1);

TEXT(<<EOF);

<script type="text/code">


                  1. Sage code pasted starting here ##########

var('x,y,t,s')

M=x*y N=-y

@interact(layout=dict(left= [['x0'],['y0'],['delx'],['dely']], bottom=[['xx'],['yy']])) def _( x0 = input_box(0,width=5,label='$x_0$'),

       y0 = input_box(0,width=5,label='$y_0$'),
       delx = input_box(1,width=5,label='$\Delta{x}$'),
       dely = input_box(1,width=5,label='$\Delta{y}$'),
       xx = range_slider(-5, 5, 1, default=(-2,2), label='x Range'),
       yy = range_slider(-5, 5, 1, default=(-1,3), label='y Range')):
           
   G = plot_vector_field((M,N),(x,xx[0],xx[1]),(y,yy[0],yy[1]),aspect_ratio=true)
   G += arrow((x0,y0),(x0+delx,y0+dely))
   show(G)


                            1. End of Sage Code ######################


</script>
  <script type="text/javascript" src="http://sagemath.org:5467/static/jquery-1.5.min.js"></script>
  <script type="text/javascript" src="http://sagemath.org:5467/embedded_singlecell.js"></script>
  <script type="text/javascript">

$(function() { // load only when the page is loaded

 var makecells = function() {
 singlecell.makeSinglecell({
     inputLocation: "#singlecell-test",
     editor: "codemirror",
     hide: ["editor","computationID","files","messages","sageMode"],
     evalButtonText: "Start/Restart",
     replaceOutput: true});
 }
 singlecell.init(makecells); // load Single Cell libraries and then
                             // initialize Single Cell instances
 });
 </script>

EOF

                              1. Below is the normal WebWork pg stuff #####################

Context()->texStrings; BEGIN_TEXT Using the contour plot below, determine the range value of the illustrated function at \( ($x0,$y0) \). $BR $BR \( f($x0,$y0) = \)\{ ans_rule(15) \} $PAR END_TEXT Context()->normalStrings;


  1. need to add reasonable approximation error of about 0.1 or so.

ANS( Compute($f0)->cmp() );


ENDDOCUMENT(); # This should be the last executable line in the problem.


To pass perl variables to the sage block if you need to from the problem initialization use:

TEXT(<<EOF);

where <<EOF allows interpolation

otherwise use:

TEXT(<<'EOF');

where 'EOF' tells perl not to interpolate variables

15:17aubreyja_yes