Difference between revisions of "Sage in WeBWorK"
Jump to navigation
Jump to search
Line 32: | Line 32: | ||
######### Sage code pasted starting here ########## |
######### Sage code pasted starting here ########## |
||
+ | |||
+ | var('x,y,z') |
||
− | var('x,y,t,s') |
||
+ | @interact(layout=dict(top=[['x0'],['y0']], |
||
+ | bottom=[['N'],['zoom_in']])) |
||
+ | def _(N=slider(5,100,1,10,label='Number of Contours'), |
||
+ | zoom_in=checkbox(false,label='Zoom in'), |
||
+ | x0=input_box(0,width=10,label='x coordinate of center'), |
||
+ | y0=input_box(0,width=10,label='y coordinate of center')): |
||
− | # |
||
− | M=x*y |
||
+ | f=(x^3-y^3)/(x^2+y^2+1) |
||
− | N=-y |
||
+ | offset = floor(10*random())/20 |
||
− | |||
+ | |||
− | @interact(layout=dict(left= [['x0'],['y0'],['delx'],['dely']], |
||
+ | if zoom_in: |
||
− | bottom=[['xx'],['yy']])) |
||
+ | surface = contour_plot(f,(x,x0-offset-1/10,x0+1/10),(y,y0-1/10,y0+offset+1/10), cmap=True,colorbar=True,fill=False,contours=N) |
||
− | def _( x0 = input_box(0,width=5,label='$x_0$'), |
||
+ | else: |
||
− | y0 = input_box(0,width=5,label='$y_0$'), |
||
+ | surface = contour_plot(f,(x,-3,3),(y,-3,3),cmap=True,colorbar=True,fill=False,contours=N) |
||
− | delx = input_box(1,width=5,label='$\Delta{x}$'), |
||
+ | limit_point = point((x0,y0),color='red',size=30) |
||
− | dely = input_box(1,width=5,label='$\Delta{y}$'), |
||
+ | |||
− | xx = range_slider(-5, 5, 1, default=(-2,2), label='x Range'), |
||
+ | html.table([[surface+limit_point]]) |
||
− | yy = range_slider(-5, 5, 1, default=(-1,3), label='y Range')): |
||
+ | html('Contour Plot of $f(x,y)$ around $(%s'%str(x0)+',%s'%str(y0)+')$') |
||
− | |||
− | G = plot_vector_field((M,N),(x,xx[0],xx[1]),(y,yy[0],yy[1]),aspect_ratio=true) |
||
− | G += arrow((x0,y0),(x0+delx,y0+dely)) |
||
− | show(G) |
||
Revision as of 17:19, 30 December 2011
Sage is an open source, online symbolic mathematical system. Details on Sage can be found at http://www.sagemath.org .
For use within WebWork, a special "single-cell" version of Sage is located at http://sagemath.org:5467
## First Homework Problem File for ## Calculus ## Partial Derivatives ## Unit 1 ## DOCUMENT(); loadMacros( "PGstandard.pl", "PGchoicemacros.pl", "MathObjects.pl", ); Context()->strings->add(none=>{}); TEXT(beginproblem()); $x0 = non_zero_random(-2,2,1); $y0 = non_zero_random(-2,2,1); $f0 = ($x0**3-$y0**3)/($x0**2+$y0**2+1); TEXT(<<SAGE);
<script type="text/code"> ######### Sage code pasted starting here ##########
var('x,y,z') @interact(layout=dict(top=[['x0'],['y0']], bottom=[['N'],['zoom_in']])) def _(N=slider(5,100,1,10,label='Number of Contours'), zoom_in=checkbox(false,label='Zoom in'), x0=input_box(0,width=10,label='x coordinate of center'), y0=input_box(0,width=10,label='y coordinate of center')): f=(x^3-y^3)/(x^2+y^2+1) offset = floor(10*random())/20 if zoom_in: surface = contour_plot(f,(x,x0-offset-1/10,x0+1/10),(y,y0-1/10,y0+offset+1/10), cmap=True,colorbar=True,fill=False,contours=N) else: surface = contour_plot(f,(x,-3,3),(y,-3,3),cmap=True,colorbar=True,fill=False,contours=N) limit_point = point((x0,y0),color='red',size=30) html.table(surface+limit_point) html('Contour Plot of $f(x,y)$ around $(%s'%str(x0)+',%s'%str(y0)+')$') ############## End of Sage Code ###################### </script>
<script type="text/javascript" src="http://sagemath.org:5467/static/jquery-1.5.min.js"></script> <script type="text/javascript" src="http://sagemath.org:5467/embedded_singlecell.js"></script> <script type="text/javascript"> $(function() { // load only when the page is loaded var makecells = function() { singlecell.makeSinglecell({ inputLocation: "#singlecell-test", editor: "codemirror", hide: ["editor","computationID","files","messages","sageMode"], evalButtonText: "Start/Restart", replaceOutput: true}); } singlecell.init(makecells); // load Single Cell libraries and then // initialize Single Cell instances }); </script> SAGE ############### Below is the normal WebWork pg stuff ##################### Context()->texStrings; BEGIN_TEXT Using the contour plot below, determine the range value of the illustrated function at \( ($x0,$y0) \). $BR $BR \( f($x0,$y0) = \)\{ ans_rule(15) \} $PAR END_TEXT Context()->normalStrings; # need to add reasonable approximation error of about 0.1 or so. ANS( Compute($f0)->cmp() ); ENDDOCUMENT(); # This should be the last executable line in the problem.
To pass perl variables to the sage block if you need to from the problem initialization use:
- TEXT(<<SAGE);
where <<SAGE allows interpolation
otherwise use:
- TEXT(<<'SAGE');
where 'SAGE' tells perl not to interpolate variables