Difference between revisions of "Problem3"
Jump to navigation
Jump to search
(Created page with 'Prep Main Page > Web Conference 2 > Sample Problems > Problem 3 # DESCRIPTION # Sample problem for WeBWorK PRE…') |
m (added tag) |
||
(One intermediate revision by one other user not shown) | |||
Line 55: | Line 55: | ||
$deriv = PopUp( [ '?', 'increasing', 'decreasing', |
$deriv = PopUp( [ '?', 'increasing', 'decreasing', |
||
− | 'neither increasing nor decreasing' ], $ans2 ); |
+ | 'neither increasing nor decreasing' ], $ans2 ); |
############################################################ |
############################################################ |
||
Line 94: | Line 94: | ||
# end of problem |
# end of problem |
||
############################################################ |
############################################################ |
||
+ | |||
+ | [[Category:PREP 2011]] |
Latest revision as of 12:13, 16 June 2021
Prep Main Page > Web Conference 2 > Sample Problems > Problem 3
# DESCRIPTION # Sample problem for WeBWorK PREP workshop # Model problem: # Determine if the function f(x) = sin(x^3)/x is positive, # negative, or zero, and increasing, decreasing, or neither # at x=2. # WeBWorK problem written by Gavin LaRose, <glarose@umich.edu> # ENDDESCRIPTION DOCUMENT(); loadMacros( "PGstandard.pl", "parserPopUp.pl", "MathObjects.pl", ); ############################################################ # problem set-up Context("Numeric"); $showPartialCorrectAnswers = 1; # randomize $r = random(2,5,1); $p = random(1,5,1); # the function $f = Compute("sin(x^$r)/x"); # the answers $fd = $f->D(); $fp = $f->eval(x=>$p); if ( $fp > 0 ) { $ans1 = 'positive'; } elsif ( $fp < 0 ) { $ans1 = 'negative'; } else { $ans1 = 'zero'; } $sign = PopUp( [ '?', 'positive', 'negative', 'zero' ], $ans1 ); $fdp = $fd->eval(x=>$p); if ( $fdp > 0 ) { $dsgn = 'is positive'; $ans2 = 'increasing'; } elsif ( $fdp < 0 ) { $dsgn = 'is negative'; $ans2 = 'decreasing'; } else { $dsgn = 'is zero'; $ans2 = 'neither increasing nor decreasing'; } $deriv = PopUp( [ '?', 'increasing', 'decreasing', 'neither increasing nor decreasing' ], $ans2 ); ############################################################ # text TEXT(beginproblem()); Context()->texStrings; BEGIN_TEXT Determine the sign and behavior of the function \(f(x) = $f\) at the point \(x = $p\). $BR At \(x = $p\), the function is \{ $sign->menu() \} and \{ $deriv->menu() \}. END_TEXT Context()->normalStrings; ############################################################ # answer and solution ANS( $sign->cmp() ); ANS( $deriv->cmp() ); Context()->texStrings; SOLUTION(EV3(<<'END_SOLUTION')); $PAR SOLUTION $PAR At the point \(x = $p\), the function \(f(x) = $f\) has the value \(f($p) = $fp\), which is \{ $sign->correct_ans() \}. The derivative of \(f\) is \(f'(x) = $fd\), so that \(f'($p) = $fdp\) $dsign, and \(f\) is \{ $deriv->correct_ans() \}. END_SOLUTION Context()->normalStrings; ENDDOCUMENT(); # end of problem ############################################################