Difference between revisions of "DoubleIntegral1"
(Created page with '<h2>Setting up a Double Integral</h2> 300px|thumb|right|Click to enlarge <p style="background-color:#f9f9f9;border:black solid 1px;padding:3px;"> Th…') |
(add historical tag and give links to newer problems.) |
||
(5 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
+ | {{historical}} |
||
+ | |||
+ | <p style="font-size: 120%;font-weight:bold">This problem has been replaced with [https://openwebwork.github.io/pg-docs/sample-problems/IntegralCalc/DoubleIntegral.html a newer version of this problem]</p> |
||
+ | |||
<h2>Setting up a Double Integral</h2> |
<h2>Setting up a Double Integral</h2> |
||
Line 5: | Line 9: | ||
This PG code shows how to allow students to set up a double integral and integrate in either order. |
This PG code shows how to allow students to set up a double integral and integrate in either order. |
||
</p> |
</p> |
||
− | * Download file: [[File:DoubleIntegral1.txt]] (change the file extension from txt to pg when you save it) |
||
+ | <!-- * File location in OPL: [https://github.com/openwebwork/webwork-open-problem-library/blob/master/OpenProblemLibrary/FortLewis/Authoring/Templates/IntegralCalcMV/DoubleIntegral1.pg FortLewis/Authoring/Templates/IntegralCalcMV/DoubleIntegral1.pg] --> |
||
− | * |
+ | * PGML location in OPL: [https://github.com/openwebwork/webwork-open-problem-library/blob/master/OpenProblemLibrary/FortLewis/Authoring/Templates/IntegralCalcMV/DoubleIntegral1_PGML.pg FortLewis/Authoring/Templates/IntegralCalcMV/DoubleIntegral1_PGML.pg] |
<br clear="all" /> |
<br clear="all" /> |
||
Line 16: | Line 20: | ||
<tr valign="top"> |
<tr valign="top"> |
||
− | <th> PG problem file </th> |
+ | <th style="width: 50%"> PG problem file </th> |
<th> Explanation </th> |
<th> Explanation </th> |
||
</tr> |
</tr> |
||
Line 65: | Line 69: | ||
<td style="background-color:#ffffdd;border:black 1px dashed;"> |
<td style="background-color:#ffffdd;border:black 1px dashed;"> |
||
<pre> |
<pre> |
||
− | Context( |
+ | Context('Numeric'); |
Context()->variables->are( |
Context()->variables->are( |
||
− | x=> |
+ | x => 'Real', |
− | + | dx => 'Real', |
|
− | + | y => 'Real', |
|
+ | dy => 'Real' |
||
+ | ); |
||
+ | Context()->flags->set(reduceConstants => 0); |
||
# |
# |
||
# limits of integration |
# limits of integration |
||
# |
# |
||
− | $a = random(1,5,1); |
+ | $a = random(1, 5, 1); |
− | $b = $a + random(1,4,1); |
+ | $b = $a + random(1, 4, 1); |
− | do { $c = random(1,5,1); } until ($c != $a); |
+ | do { $c = random(1, 5, 1); } until ($c != $a); |
− | do { $d = $c + random(1,4,1); } until ($d != $b); |
+ | do { $d = $c + random(1, 4, 1); } until ($d != $b); |
# |
# |
||
# integrand and volume |
# integrand and volume |
||
# |
# |
||
− | $f = Formula( |
+ | $f = Formula('x*y'); |
$V = Formula("($b^2-$a^2) * ($d^2-$c^2) / 4"); |
$V = Formula("($b^2-$a^2) * ($d^2-$c^2) / 4"); |
||
− | |||
# |
# |
||
# differentials and limits of integration |
# differentials and limits of integration |
||
# |
# |
||
− | # Case 0, element 0 of each array below, is |
+ | # Case 0, element 0 of each array below, is |
# if the order of integration is dx dy |
# if the order of integration is dx dy |
||
# |
# |
||
# Case 1, element 1 of each array below, is |
# Case 1, element 1 of each array below, is |
||
# if the order of integration is dy dx |
# if the order of integration is dy dx |
||
− | # |
||
− | # "id" and "od" stand for inner and outer differential |
||
# |
# |
||
− | @id = (Formula("dx"),Formula("dy")); # (case 0, case 1) |
||
+ | # 'id' and 'od' stand for inner and outer differential |
||
− | @od = (Formula("dy"),Formula("dx")); # (case 0, case 1) |
||
+ | # |
||
+ | @id = (Formula('dx'), Formula('dy')); # (case 0, case 1) |
||
+ | @od = (Formula('dy'), Formula('dx')); # (case 0, case 1) |
||
# |
# |
||
# A = outer integral, lower limit |
# A = outer integral, lower limit |
||
Line 105: | Line 108: | ||
# D = inner integral, upper limit |
# D = inner integral, upper limit |
||
# |
# |
||
− | @A = (Formula("$c"),Formula("$a")); # (case 0, case 1) |
+ | @A = (Formula("$c"), Formula("$a")); # (case 0, case 1) |
− | @B = (Formula("$d"),Formula("$b")); # (case 0, case 1) |
+ | @B = (Formula("$d"), Formula("$b")); # (case 0, case 1) |
− | @C = (Formula("$a"),Formula("$c")); # (case 0, case 1) |
+ | @C = (Formula("$a"), Formula("$c")); # (case 0, case 1) |
− | @D = (Formula("$b"),Formula("$d")); # (case 0, case 1) |
+ | @D = (Formula("$b"), Formula("$d")); # (case 0, case 1) |
− | |||
− | $multians = MultiAnswer( |
+ | $multians = MultiAnswer($f, $id[0], $od[0], $A[0], $B[0], $C[0], $D[0])->with( |
− | + | singleResult => 1, |
|
− | + | checker => sub { |
|
− | + | my ($correct, $student, $self) = @_; |
|
− | + | my ($fstu, $idstu, $odstu, $Astu, $Bstu, $Cstu, $Dstu) = @{$student}; |
|
− | + | if ( |
|
− | + | ( |
|
− | + | $f == $fstu |
|
− | + | && $id[0] == $idstu |
|
− | + | && $od[0] == $odstu |
|
− | + | && $A[0] == $Astu |
|
− | + | && $B[0] == $Bstu |
|
− | + | && $C[0] == $Cstu |
|
− | + | && $D[0] == $Dstu |
|
− | + | ) |
|
− | + | || ($f == $fstu |
|
− | + | && $id[1] == $idstu |
|
− | + | && $od[1] == $odstu |
|
− | + | && $A[1] == $Astu |
|
− | + | && $B[1] == $Bstu |
|
− | + | && $C[1] == $Cstu |
|
− | + | && $D[1] == $Dstu) |
|
− | + | ) |
|
− | + | { |
|
− | + | return 1; |
|
− | + | } elsif ( |
|
− | + | ( |
|
− | + | $f == $fstu |
|
− | + | && $id[0] == $idstu |
|
− | + | && $od[0] == $odstu |
|
− | + | && ($A[0] != $Astu || $B[0] != $Bstu) |
|
− | + | && $C[0] == $Cstu |
|
− | + | && $D[0] == $Dstu |
|
− | + | ) |
|
− | + | || ($f == $fstu |
|
− | + | && $id[1] == $idstu |
|
− | + | && $od[1] == $odstu |
|
− | + | && ($A[1] != $Astu || $B[1] != $Bstu) |
|
− | + | && $C[1] == $Cstu |
|
− | + | && $D[1] == $Dstu) |
|
− | + | || ($f == $fstu |
|
− | + | && $id[0] == $idstu |
|
− | + | && $od[0] == $odstu |
|
− | + | && $A[0] == $Astu |
|
− | + | && $B[0] == $Bstu |
|
− | + | && ($C[0] != $Cstu || $D[0] != $Dstu)) |
|
− | + | || ($f == $fstu |
|
− | + | && $id[1] == $idstu |
|
− | + | && $od[1] == $odstu |
|
− | + | && $A[1] == $Astu |
|
− | + | && $B[1] == $Bstu |
|
− | + | && ($C[1] != $Cstu || $D[1] != $Dstu)) |
|
− | + | ) |
|
− | + | { |
|
− | + | $self->setMessage(1, 'Check your limits of integration.'); |
|
− | + | return 0.94; |
|
− | + | } elsif ( |
|
− | + | ( |
|
− | + | $f == $fstu |
|
− | + | && $id[0] == $idstu |
|
− | + | && $od[0] == $odstu |
|
− | + | && ($A[0] != $Astu || $B[0] != $Bstu) |
|
− | + | && ($C[0] != $Cstu || $D[0] != $Dstu) |
|
− | + | ) |
|
− | + | || ($f == $fstu |
|
− | + | && $id[1] == $idstu |
|
− | + | && $od[1] == $odstu |
|
− | + | && ($A[1] != $Astu || $B[1] != $Bstu) |
|
− | + | && ($C[1] != $Cstu || $D[1] != $Dstu)) |
|
− | + | ) |
|
− | + | { |
|
− | + | $self->setMessage(1, 'Check your limits of integration and order of integration.'); |
|
− | + | return 0.47; |
|
− | + | } else { |
|
− | + | return 0; |
|
− | + | } |
|
− | + | } |
|
− | $id[1] == $idstu && |
||
− | $od[1] == $odstu && |
||
− | ($A[1] != $Astu || $B[1] != $Bstu) && |
||
− | ($C[1] != $Cstu || $D[1] != $Dstu) |
||
− | ) |
||
− | ) { |
||
− | $self->setMessage(1, |
||
− | "Check your limits of integration and order of integration."); |
||
− | return 0.47; |
||
− | } else { |
||
− | return 0; |
||
− | } |
||
− | } |
||
); |
); |
||
</pre> |
</pre> |
||
Line 194: | Line 197: | ||
<b>Setup:</b> |
<b>Setup:</b> |
||
There are two separate cases: integrating with respect to <code>dx dy</code> (which we call case 0) or with respect to <code>dy dx</code> (which we call case 1). The zeroth and first entries in each of the arrays <code>@id, @od, @A, @B, @C, @D</code> hold the values for case 0 and case 1, respectively. We used constant limits of integration to keep this example easy to follow, but we encourage you to write questions over non-rectangular regions. |
There are two separate cases: integrating with respect to <code>dx dy</code> (which we call case 0) or with respect to <code>dy dx</code> (which we call case 1). The zeroth and first entries in each of the arrays <code>@id, @od, @A, @B, @C, @D</code> hold the values for case 0 and case 1, respectively. We used constant limits of integration to keep this example easy to follow, but we encourage you to write questions over non-rectangular regions. |
||
+ | </p> |
||
+ | <p> |
||
+ | The <code>$multians</code> object has been compartmentalized, so you shouldn't need to change it unless you want to fiddle with the weighted score for each answer blank (by changing the return values). The return values are set so that the percentages come out nicely. |
||
</p> |
</p> |
||
</td> |
</td> |
||
Line 203: | Line 209: | ||
<td style="background-color:#ffdddd;border:black 1px dashed;"> |
<td style="background-color:#ffdddd;border:black 1px dashed;"> |
||
<pre> |
<pre> |
||
− | Context()->texStrings; |
||
+ | BEGIN_PGML |
||
− | BEGIN_TEXT |
||
Set up a double integral in rectangular coordinates |
Set up a double integral in rectangular coordinates |
||
− | for calculating the volume of the solid under the |
+ | for calculating the volume of the solid under the |
− | graph of the function |
+ | graph of the function [` f(x,y) = [$f] `] over the |
− | region |
+ | region [` [$a] \leq x \leq [$b] `] and [` [$c] \leq y \leq [$d] `]. |
− | $BR |
||
− | $BR |
||
− | ${BITALIC}Instructions:${EITALIC} |
||
− | Please enter the integrand in the first answer box. |
||
− | Depending on the order of integration you choose, |
||
− | enter ${BITALIC}dx${EITALIC} and ${BITALIC}dy${EITALIC} |
||
− | in either order into the second and third answer boxes |
||
− | with only one ${BITALIC}dx${EITALIC} or |
||
− | ${BITALIC}dy${EITALIC} in each box. Then, enter the limits of |
||
− | integration and evaluate the integral to find the volume. |
||
− | $BR |
||
− | $BR |
||
− | \( \displaystyle \int_A^B \int_C^D \) |
||
− | \{ $multians->ans_rule(40) \} |
||
− | \{ $multians->ans_rule(5) \} |
||
− | \{ $multians->ans_rule(5) \} |
||
− | $BR |
||
− | $BR |
||
− | A = \{ $multians->ans_rule(20) \} $BR |
||
− | B = \{ $multians->ans_rule(20) \} $BR |
||
− | C = \{ $multians->ans_rule(20) \} $BR |
||
− | D = \{ $multians->ans_rule(20) \} |
||
− | $BR |
||
− | $BR |
||
− | Volume = \{ ans_rule(40) \} |
||
− | END_TEXT |
||
− | Context()->normalStrings; |
||
− | </pre> |
||
− | <td style="background-color:#ffcccc;padding:7px;"> |
||
− | <p> |
||
− | <b>Main Text:</b> |
||
− | The only interesting thing to note here is that you must use <code>$multians->ans_rule(20)</code> to make each answer blank known to the object <code>$multians</code>. |
||
− | </p> |
||
− | </td> |
||
− | </tr> |
||
− | <!-- Answer evaluation section --> |
||
+ | _Instructions:_ |
||
+ | Please enter the integrand in the first answer box. |
||
+ | Depending on the order of integration you choose, |
||
+ | enter _dx_ and _dy_ |
||
+ | in either order into the second and third answer boxes |
||
+ | with only one _dx_ or _dy_ in each box. |
||
+ | Then, enter the limits of |
||
+ | integration and evaluate the integral to find the volume. |
||
− | <tr valign="top"> |
||
+ | [`` \int_A^B \int_C^D ``] |
||
− | <td style="background-color:#eeddff;border:black 1px dashed;"> |
||
+ | [___________]{$multians} [_____]{$multians} [_____]{$multians} |
||
− | <pre> |
||
− | $showPartialCorrectAnswers = 1; |
||
− | ANS( $multians->cmp() ); |
||
+ | A = [_____________]{$multians} |
||
− | ANS( $V->cmp() ); |
||
+ | B = [_____________]{$multians} |
||
+ | C = [_____________]{$multians} |
||
+ | D = [_____________]{$multians} |
||
+ | |||
+ | Volume = [___________________________]{$V} |
||
</pre> |
</pre> |
||
− | <td style="background-color:# |
+ | <td style="background-color:#ffcccc;padding:7px;"> |
<p> |
<p> |
||
− | <b> |
+ | <b>Main Text:</b> |
+ | The only interesting thing to note here is that you must use <code>$multians</code> for each answer blank (except the last one, which is independent.) |
||
</p> |
</p> |
||
</td> |
</td> |
||
Line 232: | Line 246: | ||
<td style="background-color:#ddddff;border:black 1px dashed;"> |
<td style="background-color:#ddddff;border:black 1px dashed;"> |
||
<pre> |
<pre> |
||
− | Context()->texStrings; |
||
+ | BEGIN_PGML_SOLUTION |
||
− | BEGIN_SOLUTION |
||
− | ${PAR}SOLUTION:${PAR} |
||
Solution explanation goes here. |
Solution explanation goes here. |
||
− | END_SOLUTION |
||
+ | END_PGML_SOLUTION |
||
− | Context()->normalStrings; |
||
− | |||
− | COMMENT(' |
+ | COMMENT('Allows integration in either order. Uses PGML.'); |
ENDDOCUMENT(); |
ENDDOCUMENT(); |
||
</pre> |
</pre> |
||
Line 257: | Line 267: | ||
[[Category:Top]] |
[[Category:Top]] |
||
− | [[Category: |
+ | [[Category:Sample Problems]] |
+ | [[Category:Subject Area Templates]] |
Latest revision as of 05:29, 18 July 2023
This problem has been replaced with a newer version of this problem
Setting up a Double Integral
This PG code shows how to allow students to set up a double integral and integrate in either order.
- PGML location in OPL: FortLewis/Authoring/Templates/IntegralCalcMV/DoubleIntegral1_PGML.pg
PG problem file | Explanation |
---|---|
Problem tagging: |
|
DOCUMENT(); loadMacros( "PGstandard.pl", "MathObjects.pl", "parserMultiAnswer.pl", ); TEXT(beginproblem()); |
Initialization:
Since there are multiple answer blanks that are dependent upon each other, we use |
Context('Numeric'); Context()->variables->are( x => 'Real', dx => 'Real', y => 'Real', dy => 'Real' ); Context()->flags->set(reduceConstants => 0); # # limits of integration # $a = random(1, 5, 1); $b = $a + random(1, 4, 1); do { $c = random(1, 5, 1); } until ($c != $a); do { $d = $c + random(1, 4, 1); } until ($d != $b); # # integrand and volume # $f = Formula('x*y'); $V = Formula("($b^2-$a^2) * ($d^2-$c^2) / 4"); # # differentials and limits of integration # # Case 0, element 0 of each array below, is # if the order of integration is dx dy # # Case 1, element 1 of each array below, is # if the order of integration is dy dx # # 'id' and 'od' stand for inner and outer differential # @id = (Formula('dx'), Formula('dy')); # (case 0, case 1) @od = (Formula('dy'), Formula('dx')); # (case 0, case 1) # # A = outer integral, lower limit # B = outer integral, upper limit # C = inner integral, lower limit # D = inner integral, upper limit # @A = (Formula("$c"), Formula("$a")); # (case 0, case 1) @B = (Formula("$d"), Formula("$b")); # (case 0, case 1) @C = (Formula("$a"), Formula("$c")); # (case 0, case 1) @D = (Formula("$b"), Formula("$d")); # (case 0, case 1) $multians = MultiAnswer($f, $id[0], $od[0], $A[0], $B[0], $C[0], $D[0])->with( singleResult => 1, checker => sub { my ($correct, $student, $self) = @_; my ($fstu, $idstu, $odstu, $Astu, $Bstu, $Cstu, $Dstu) = @{$student}; if ( ( $f == $fstu && $id[0] == $idstu && $od[0] == $odstu && $A[0] == $Astu && $B[0] == $Bstu && $C[0] == $Cstu && $D[0] == $Dstu ) || ($f == $fstu && $id[1] == $idstu && $od[1] == $odstu && $A[1] == $Astu && $B[1] == $Bstu && $C[1] == $Cstu && $D[1] == $Dstu) ) { return 1; } elsif ( ( $f == $fstu && $id[0] == $idstu && $od[0] == $odstu && ($A[0] != $Astu || $B[0] != $Bstu) && $C[0] == $Cstu && $D[0] == $Dstu ) || ($f == $fstu && $id[1] == $idstu && $od[1] == $odstu && ($A[1] != $Astu || $B[1] != $Bstu) && $C[1] == $Cstu && $D[1] == $Dstu) || ($f == $fstu && $id[0] == $idstu && $od[0] == $odstu && $A[0] == $Astu && $B[0] == $Bstu && ($C[0] != $Cstu || $D[0] != $Dstu)) || ($f == $fstu && $id[1] == $idstu && $od[1] == $odstu && $A[1] == $Astu && $B[1] == $Bstu && ($C[1] != $Cstu || $D[1] != $Dstu)) ) { $self->setMessage(1, 'Check your limits of integration.'); return 0.94; } elsif ( ( $f == $fstu && $id[0] == $idstu && $od[0] == $odstu && ($A[0] != $Astu || $B[0] != $Bstu) && ($C[0] != $Cstu || $D[0] != $Dstu) ) || ($f == $fstu && $id[1] == $idstu && $od[1] == $odstu && ($A[1] != $Astu || $B[1] != $Bstu) && ($C[1] != $Cstu || $D[1] != $Dstu)) ) { $self->setMessage(1, 'Check your limits of integration and order of integration.'); return 0.47; } else { return 0; } } ); |
Setup:
There are two separate cases: integrating with respect to
The |
BEGIN_PGML Set up a double integral in rectangular coordinates for calculating the volume of the solid under the graph of the function [` f(x,y) = [$f] `] over the region [` [$a] \leq x \leq [$b] `] and [` [$c] \leq y \leq [$d] `]. _Instructions:_ Please enter the integrand in the first answer box. Depending on the order of integration you choose, enter _dx_ and _dy_ in either order into the second and third answer boxes with only one _dx_ or _dy_ in each box. Then, enter the limits of integration and evaluate the integral to find the volume. [`` \int_A^B \int_C^D ``] [___________]{$multians} [_____]{$multians} [_____]{$multians} A = [_____________]{$multians} B = [_____________]{$multians} C = [_____________]{$multians} D = [_____________]{$multians} Volume = [___________________________]{$V} |
Main Text:
The only interesting thing to note here is that you must use |
BEGIN_PGML_SOLUTION Solution explanation goes here. END_PGML_SOLUTION COMMENT('Allows integration in either order. Uses PGML.'); ENDDOCUMENT(); |
Solution: |