DoubleIntegral1
This problem has been replaced with a newer version of this problem
Setting up a Double Integral
This PG code shows how to allow students to set up a double integral and integrate in either order.
- PGML location in OPL: FortLewis/Authoring/Templates/IntegralCalcMV/DoubleIntegral1_PGML.pg
PG problem file | Explanation |
---|---|
Problem tagging: |
|
DOCUMENT(); loadMacros( "PGstandard.pl", "MathObjects.pl", "parserMultiAnswer.pl", ); TEXT(beginproblem()); |
Initialization:
Since there are multiple answer blanks that are dependent upon each other, we use |
Context('Numeric'); Context()->variables->are( x => 'Real', dx => 'Real', y => 'Real', dy => 'Real' ); Context()->flags->set(reduceConstants => 0); # # limits of integration # $a = random(1, 5, 1); $b = $a + random(1, 4, 1); do { $c = random(1, 5, 1); } until ($c != $a); do { $d = $c + random(1, 4, 1); } until ($d != $b); # # integrand and volume # $f = Formula('x*y'); $V = Formula("($b^2-$a^2) * ($d^2-$c^2) / 4"); # # differentials and limits of integration # # Case 0, element 0 of each array below, is # if the order of integration is dx dy # # Case 1, element 1 of each array below, is # if the order of integration is dy dx # # 'id' and 'od' stand for inner and outer differential # @id = (Formula('dx'), Formula('dy')); # (case 0, case 1) @od = (Formula('dy'), Formula('dx')); # (case 0, case 1) # # A = outer integral, lower limit # B = outer integral, upper limit # C = inner integral, lower limit # D = inner integral, upper limit # @A = (Formula("$c"), Formula("$a")); # (case 0, case 1) @B = (Formula("$d"), Formula("$b")); # (case 0, case 1) @C = (Formula("$a"), Formula("$c")); # (case 0, case 1) @D = (Formula("$b"), Formula("$d")); # (case 0, case 1) $multians = MultiAnswer($f, $id[0], $od[0], $A[0], $B[0], $C[0], $D[0])->with( singleResult => 1, checker => sub { my ($correct, $student, $self) = @_; my ($fstu, $idstu, $odstu, $Astu, $Bstu, $Cstu, $Dstu) = @{$student}; if ( ( $f == $fstu && $id[0] == $idstu && $od[0] == $odstu && $A[0] == $Astu && $B[0] == $Bstu && $C[0] == $Cstu && $D[0] == $Dstu ) || ($f == $fstu && $id[1] == $idstu && $od[1] == $odstu && $A[1] == $Astu && $B[1] == $Bstu && $C[1] == $Cstu && $D[1] == $Dstu) ) { return 1; } elsif ( ( $f == $fstu && $id[0] == $idstu && $od[0] == $odstu && ($A[0] != $Astu || $B[0] != $Bstu) && $C[0] == $Cstu && $D[0] == $Dstu ) || ($f == $fstu && $id[1] == $idstu && $od[1] == $odstu && ($A[1] != $Astu || $B[1] != $Bstu) && $C[1] == $Cstu && $D[1] == $Dstu) || ($f == $fstu && $id[0] == $idstu && $od[0] == $odstu && $A[0] == $Astu && $B[0] == $Bstu && ($C[0] != $Cstu || $D[0] != $Dstu)) || ($f == $fstu && $id[1] == $idstu && $od[1] == $odstu && $A[1] == $Astu && $B[1] == $Bstu && ($C[1] != $Cstu || $D[1] != $Dstu)) ) { $self->setMessage(1, 'Check your limits of integration.'); return 0.94; } elsif ( ( $f == $fstu && $id[0] == $idstu && $od[0] == $odstu && ($A[0] != $Astu || $B[0] != $Bstu) && ($C[0] != $Cstu || $D[0] != $Dstu) ) || ($f == $fstu && $id[1] == $idstu && $od[1] == $odstu && ($A[1] != $Astu || $B[1] != $Bstu) && ($C[1] != $Cstu || $D[1] != $Dstu)) ) { $self->setMessage(1, 'Check your limits of integration and order of integration.'); return 0.47; } else { return 0; } } ); |
Setup:
There are two separate cases: integrating with respect to
The |
BEGIN_PGML Set up a double integral in rectangular coordinates for calculating the volume of the solid under the graph of the function [` f(x,y) = [$f] `] over the region [` [$a] \leq x \leq [$b] `] and [` [$c] \leq y \leq [$d] `]. _Instructions:_ Please enter the integrand in the first answer box. Depending on the order of integration you choose, enter _dx_ and _dy_ in either order into the second and third answer boxes with only one _dx_ or _dy_ in each box. Then, enter the limits of integration and evaluate the integral to find the volume. [`` \int_A^B \int_C^D ``] [___________]{$multians} [_____]{$multians} [_____]{$multians} A = [_____________]{$multians} B = [_____________]{$multians} C = [_____________]{$multians} D = [_____________]{$multians} Volume = [___________________________]{$V} |
Main Text:
The only interesting thing to note here is that you must use |
BEGIN_PGML_SOLUTION Solution explanation goes here. END_PGML_SOLUTION COMMENT('Allows integration in either order. Uses PGML.'); ENDDOCUMENT(); |
Solution: |