Difference between revisions of "DoubleIntegral1"
Paultpearson (talk | contribs) m |
(add historical tag and give links to newer problems.) |
||
(3 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
+ | {{historical}} |
||
+ | |||
+ | <p style="font-size: 120%;font-weight:bold">This problem has been replaced with [https://openwebwork.github.io/pg-docs/sample-problems/IntegralCalc/DoubleIntegral.html a newer version of this problem]</p> |
||
+ | |||
<h2>Setting up a Double Integral</h2> |
<h2>Setting up a Double Integral</h2> |
||
Line 5: | Line 9: | ||
This PG code shows how to allow students to set up a double integral and integrate in either order. |
This PG code shows how to allow students to set up a double integral and integrate in either order. |
||
</p> |
</p> |
||
− | * Download file: [[File:DoubleIntegral1.txt]] (change the file extension from txt to pg when you save it) |
||
+ | <!-- * File location in OPL: [https://github.com/openwebwork/webwork-open-problem-library/blob/master/OpenProblemLibrary/FortLewis/Authoring/Templates/IntegralCalcMV/DoubleIntegral1.pg FortLewis/Authoring/Templates/IntegralCalcMV/DoubleIntegral1.pg] --> |
||
− | * |
+ | * PGML location in OPL: [https://github.com/openwebwork/webwork-open-problem-library/blob/master/OpenProblemLibrary/FortLewis/Authoring/Templates/IntegralCalcMV/DoubleIntegral1_PGML.pg FortLewis/Authoring/Templates/IntegralCalcMV/DoubleIntegral1_PGML.pg] |
<br clear="all" /> |
<br clear="all" /> |
||
Line 16: | Line 20: | ||
<tr valign="top"> |
<tr valign="top"> |
||
− | <th> PG problem file </th> |
+ | <th style="width: 50%"> PG problem file </th> |
<th> Explanation </th> |
<th> Explanation </th> |
||
</tr> |
</tr> |
||
Line 65: | Line 69: | ||
<td style="background-color:#ffffdd;border:black 1px dashed;"> |
<td style="background-color:#ffffdd;border:black 1px dashed;"> |
||
<pre> |
<pre> |
||
− | Context( |
+ | Context('Numeric'); |
Context()->variables->are( |
Context()->variables->are( |
||
− | x=> |
+ | x => 'Real', |
− | + | dx => 'Real', |
|
− | + | y => 'Real', |
|
+ | dy => 'Real' |
||
+ | ); |
||
+ | Context()->flags->set(reduceConstants => 0); |
||
# |
# |
||
# limits of integration |
# limits of integration |
||
# |
# |
||
− | $a = random(1,5,1); |
+ | $a = random(1, 5, 1); |
− | $b = $a + random(1,4,1); |
+ | $b = $a + random(1, 4, 1); |
− | do { $c = random(1,5,1); } until ($c != $a); |
+ | do { $c = random(1, 5, 1); } until ($c != $a); |
− | do { $d = $c + random(1,4,1); } until ($d != $b); |
+ | do { $d = $c + random(1, 4, 1); } until ($d != $b); |
# |
# |
||
# integrand and volume |
# integrand and volume |
||
# |
# |
||
− | $f = Formula( |
+ | $f = Formula('x*y'); |
$V = Formula("($b^2-$a^2) * ($d^2-$c^2) / 4"); |
$V = Formula("($b^2-$a^2) * ($d^2-$c^2) / 4"); |
||
− | |||
# |
# |
||
# differentials and limits of integration |
# differentials and limits of integration |
||
# |
# |
||
− | # Case 0, element 0 of each array below, is |
+ | # Case 0, element 0 of each array below, is |
# if the order of integration is dx dy |
# if the order of integration is dx dy |
||
# |
# |
||
# Case 1, element 1 of each array below, is |
# Case 1, element 1 of each array below, is |
||
# if the order of integration is dy dx |
# if the order of integration is dy dx |
||
− | # |
||
− | # "id" and "od" stand for inner and outer differential |
||
# |
# |
||
− | @id = (Formula("dx"),Formula("dy")); # (case 0, case 1) |
||
+ | # 'id' and 'od' stand for inner and outer differential |
||
− | @od = (Formula("dy"),Formula("dx")); # (case 0, case 1) |
||
+ | # |
||
+ | @id = (Formula('dx'), Formula('dy')); # (case 0, case 1) |
||
+ | @od = (Formula('dy'), Formula('dx')); # (case 0, case 1) |
||
# |
# |
||
# A = outer integral, lower limit |
# A = outer integral, lower limit |
||
Line 105: | Line 108: | ||
# D = inner integral, upper limit |
# D = inner integral, upper limit |
||
# |
# |
||
− | @A = (Formula("$c"),Formula("$a")); # (case 0, case 1) |
+ | @A = (Formula("$c"), Formula("$a")); # (case 0, case 1) |
− | @B = (Formula("$d"),Formula("$b")); # (case 0, case 1) |
+ | @B = (Formula("$d"), Formula("$b")); # (case 0, case 1) |
− | @C = (Formula("$a"),Formula("$c")); # (case 0, case 1) |
+ | @C = (Formula("$a"), Formula("$c")); # (case 0, case 1) |
− | @D = (Formula("$b"),Formula("$d")); # (case 0, case 1) |
+ | @D = (Formula("$b"), Formula("$d")); # (case 0, case 1) |
− | |||
− | $multians = MultiAnswer( |
+ | $multians = MultiAnswer($f, $id[0], $od[0], $A[0], $B[0], $C[0], $D[0])->with( |
− | + | singleResult => 1, |
|
− | + | checker => sub { |
|
− | + | my ($correct, $student, $self) = @_; |
|
− | + | my ($fstu, $idstu, $odstu, $Astu, $Bstu, $Cstu, $Dstu) = @{$student}; |
|
− | + | if ( |
|
− | + | ( |
|
− | + | $f == $fstu |
|
− | + | && $id[0] == $idstu |
|
− | + | && $od[0] == $odstu |
|
− | + | && $A[0] == $Astu |
|
− | + | && $B[0] == $Bstu |
|
− | + | && $C[0] == $Cstu |
|
− | + | && $D[0] == $Dstu |
|
− | + | ) |
|
− | + | || ($f == $fstu |
|
− | + | && $id[1] == $idstu |
|
− | + | && $od[1] == $odstu |
|
− | + | && $A[1] == $Astu |
|
− | + | && $B[1] == $Bstu |
|
− | + | && $C[1] == $Cstu |
|
− | + | && $D[1] == $Dstu) |
|
− | + | ) |
|
− | + | { |
|
− | + | return 1; |
|
− | + | } elsif ( |
|
− | + | ( |
|
− | + | $f == $fstu |
|
− | + | && $id[0] == $idstu |
|
− | + | && $od[0] == $odstu |
|
− | + | && ($A[0] != $Astu || $B[0] != $Bstu) |
|
− | + | && $C[0] == $Cstu |
|
− | + | && $D[0] == $Dstu |
|
− | + | ) |
|
− | + | || ($f == $fstu |
|
− | + | && $id[1] == $idstu |
|
− | + | && $od[1] == $odstu |
|
− | + | && ($A[1] != $Astu || $B[1] != $Bstu) |
|
− | + | && $C[1] == $Cstu |
|
− | + | && $D[1] == $Dstu) |
|
− | + | || ($f == $fstu |
|
− | + | && $id[0] == $idstu |
|
− | + | && $od[0] == $odstu |
|
− | + | && $A[0] == $Astu |
|
− | + | && $B[0] == $Bstu |
|
− | + | && ($C[0] != $Cstu || $D[0] != $Dstu)) |
|
− | + | || ($f == $fstu |
|
− | + | && $id[1] == $idstu |
|
− | + | && $od[1] == $odstu |
|
− | + | && $A[1] == $Astu |
|
− | + | && $B[1] == $Bstu |
|
− | + | && ($C[1] != $Cstu || $D[1] != $Dstu)) |
|
− | + | ) |
|
− | + | { |
|
− | + | $self->setMessage(1, 'Check your limits of integration.'); |
|
− | + | return 0.94; |
|
− | + | } elsif ( |
|
− | + | ( |
|
− | + | $f == $fstu |
|
− | + | && $id[0] == $idstu |
|
− | + | && $od[0] == $odstu |
|
− | + | && ($A[0] != $Astu || $B[0] != $Bstu) |
|
− | + | && ($C[0] != $Cstu || $D[0] != $Dstu) |
|
− | + | ) |
|
− | + | || ($f == $fstu |
|
− | + | && $id[1] == $idstu |
|
− | + | && $od[1] == $odstu |
|
− | + | && ($A[1] != $Astu || $B[1] != $Bstu) |
|
− | + | && ($C[1] != $Cstu || $D[1] != $Dstu)) |
|
− | + | ) |
|
− | + | { |
|
− | + | $self->setMessage(1, 'Check your limits of integration and order of integration.'); |
|
− | + | return 0.47; |
|
− | + | } else { |
|
− | + | return 0; |
|
− | + | } |
|
− | + | } |
|
− | $id[1] == $idstu && |
||
− | $od[1] == $odstu && |
||
− | ($A[1] != $Astu || $B[1] != $Bstu) && |
||
− | ($C[1] != $Cstu || $D[1] != $Dstu) |
||
− | ) |
||
− | ) { |
||
− | $self->setMessage(1, |
||
− | "Check your limits of integration and order of integration."); |
||
− | return 0.47; |
||
− | } else { |
||
− | return 0; |
||
− | } |
||
− | } |
||
); |
); |
||
</pre> |
</pre> |
||
Line 206: | Line 209: | ||
<td style="background-color:#ffdddd;border:black 1px dashed;"> |
<td style="background-color:#ffdddd;border:black 1px dashed;"> |
||
<pre> |
<pre> |
||
− | Context()->texStrings; |
||
+ | BEGIN_PGML |
||
− | BEGIN_TEXT |
||
Set up a double integral in rectangular coordinates |
Set up a double integral in rectangular coordinates |
||
− | for calculating the volume of the solid under the |
+ | for calculating the volume of the solid under the |
− | graph of the function |
+ | graph of the function [` f(x,y) = [$f] `] over the |
− | region |
+ | region [` [$a] \leq x \leq [$b] `] and [` [$c] \leq y \leq [$d] `]. |
− | $BR |
||
− | $BR |
||
− | ${BITALIC}Instructions:${EITALIC} |
||
− | Please enter the integrand in the first answer box. |
||
− | Depending on the order of integration you choose, |
||
− | enter ${BITALIC}dx${EITALIC} and ${BITALIC}dy${EITALIC} |
||
− | in either order into the second and third answer boxes |
||
− | with only one ${BITALIC}dx${EITALIC} or |
||
− | ${BITALIC}dy${EITALIC} in each box. Then, enter the limits of |
||
− | integration and evaluate the integral to find the volume. |
||
− | $BR |
||
− | $BR |
||
− | \( \displaystyle \int_A^B \int_C^D \) |
||
− | \{ $multians->ans_rule(40) \} |
||
− | \{ $multians->ans_rule(5) \} |
||
− | \{ $multians->ans_rule(5) \} |
||
− | $BR |
||
− | $BR |
||
− | A = \{ $multians->ans_rule(20) \} $BR |
||
− | B = \{ $multians->ans_rule(20) \} $BR |
||
− | C = \{ $multians->ans_rule(20) \} $BR |
||
− | D = \{ $multians->ans_rule(20) \} |
||
− | $BR |
||
− | $BR |
||
− | Volume = \{ ans_rule(40) \} |
||
− | END_TEXT |
||
− | Context()->normalStrings; |
||
− | </pre> |
||
− | <td style="background-color:#ffcccc;padding:7px;"> |
||
− | <p> |
||
− | <b>Main Text:</b> |
||
− | The only interesting thing to note here is that you must use <code>$multians->ans_rule(20)</code> to make each answer blank known to the object <code>$multians</code>. |
||
− | </p> |
||
− | </td> |
||
− | </tr> |
||
− | <!-- Answer evaluation section --> |
||
+ | _Instructions:_ |
||
+ | Please enter the integrand in the first answer box. |
||
+ | Depending on the order of integration you choose, |
||
+ | enter _dx_ and _dy_ |
||
+ | in either order into the second and third answer boxes |
||
+ | with only one _dx_ or _dy_ in each box. |
||
+ | Then, enter the limits of |
||
+ | integration and evaluate the integral to find the volume. |
||
− | <tr valign="top"> |
||
+ | [`` \int_A^B \int_C^D ``] |
||
− | <td style="background-color:#eeddff;border:black 1px dashed;"> |
||
+ | [___________]{$multians} [_____]{$multians} [_____]{$multians} |
||
− | <pre> |
||
− | $showPartialCorrectAnswers = 1; |
||
− | ANS( $multians->cmp() ); |
||
+ | A = [_____________]{$multians} |
||
− | ANS( $V->cmp() ); |
||
+ | B = [_____________]{$multians} |
||
+ | C = [_____________]{$multians} |
||
+ | D = [_____________]{$multians} |
||
+ | |||
+ | Volume = [___________________________]{$V} |
||
</pre> |
</pre> |
||
− | <td style="background-color:# |
+ | <td style="background-color:#ffcccc;padding:7px;"> |
<p> |
<p> |
||
− | <b> |
+ | <b>Main Text:</b> |
+ | The only interesting thing to note here is that you must use <code>$multians</code> for each answer blank (except the last one, which is independent.) |
||
</p> |
</p> |
||
</td> |
</td> |
||
Line 235: | Line 246: | ||
<td style="background-color:#ddddff;border:black 1px dashed;"> |
<td style="background-color:#ddddff;border:black 1px dashed;"> |
||
<pre> |
<pre> |
||
− | Context()->texStrings; |
||
+ | BEGIN_PGML_SOLUTION |
||
− | BEGIN_SOLUTION |
||
− | ${PAR}SOLUTION:${PAR} |
||
Solution explanation goes here. |
Solution explanation goes here. |
||
− | END_SOLUTION |
||
+ | END_PGML_SOLUTION |
||
− | Context()->normalStrings; |
||
− | |||
− | COMMENT(' |
+ | COMMENT('Allows integration in either order. Uses PGML.'); |
ENDDOCUMENT(); |
ENDDOCUMENT(); |
||
</pre> |
</pre> |
Latest revision as of 05:29, 18 July 2023
This problem has been replaced with a newer version of this problem
Setting up a Double Integral
This PG code shows how to allow students to set up a double integral and integrate in either order.
- PGML location in OPL: FortLewis/Authoring/Templates/IntegralCalcMV/DoubleIntegral1_PGML.pg
PG problem file | Explanation |
---|---|
Problem tagging: |
|
DOCUMENT(); loadMacros( "PGstandard.pl", "MathObjects.pl", "parserMultiAnswer.pl", ); TEXT(beginproblem()); |
Initialization:
Since there are multiple answer blanks that are dependent upon each other, we use |
Context('Numeric'); Context()->variables->are( x => 'Real', dx => 'Real', y => 'Real', dy => 'Real' ); Context()->flags->set(reduceConstants => 0); # # limits of integration # $a = random(1, 5, 1); $b = $a + random(1, 4, 1); do { $c = random(1, 5, 1); } until ($c != $a); do { $d = $c + random(1, 4, 1); } until ($d != $b); # # integrand and volume # $f = Formula('x*y'); $V = Formula("($b^2-$a^2) * ($d^2-$c^2) / 4"); # # differentials and limits of integration # # Case 0, element 0 of each array below, is # if the order of integration is dx dy # # Case 1, element 1 of each array below, is # if the order of integration is dy dx # # 'id' and 'od' stand for inner and outer differential # @id = (Formula('dx'), Formula('dy')); # (case 0, case 1) @od = (Formula('dy'), Formula('dx')); # (case 0, case 1) # # A = outer integral, lower limit # B = outer integral, upper limit # C = inner integral, lower limit # D = inner integral, upper limit # @A = (Formula("$c"), Formula("$a")); # (case 0, case 1) @B = (Formula("$d"), Formula("$b")); # (case 0, case 1) @C = (Formula("$a"), Formula("$c")); # (case 0, case 1) @D = (Formula("$b"), Formula("$d")); # (case 0, case 1) $multians = MultiAnswer($f, $id[0], $od[0], $A[0], $B[0], $C[0], $D[0])->with( singleResult => 1, checker => sub { my ($correct, $student, $self) = @_; my ($fstu, $idstu, $odstu, $Astu, $Bstu, $Cstu, $Dstu) = @{$student}; if ( ( $f == $fstu && $id[0] == $idstu && $od[0] == $odstu && $A[0] == $Astu && $B[0] == $Bstu && $C[0] == $Cstu && $D[0] == $Dstu ) || ($f == $fstu && $id[1] == $idstu && $od[1] == $odstu && $A[1] == $Astu && $B[1] == $Bstu && $C[1] == $Cstu && $D[1] == $Dstu) ) { return 1; } elsif ( ( $f == $fstu && $id[0] == $idstu && $od[0] == $odstu && ($A[0] != $Astu || $B[0] != $Bstu) && $C[0] == $Cstu && $D[0] == $Dstu ) || ($f == $fstu && $id[1] == $idstu && $od[1] == $odstu && ($A[1] != $Astu || $B[1] != $Bstu) && $C[1] == $Cstu && $D[1] == $Dstu) || ($f == $fstu && $id[0] == $idstu && $od[0] == $odstu && $A[0] == $Astu && $B[0] == $Bstu && ($C[0] != $Cstu || $D[0] != $Dstu)) || ($f == $fstu && $id[1] == $idstu && $od[1] == $odstu && $A[1] == $Astu && $B[1] == $Bstu && ($C[1] != $Cstu || $D[1] != $Dstu)) ) { $self->setMessage(1, 'Check your limits of integration.'); return 0.94; } elsif ( ( $f == $fstu && $id[0] == $idstu && $od[0] == $odstu && ($A[0] != $Astu || $B[0] != $Bstu) && ($C[0] != $Cstu || $D[0] != $Dstu) ) || ($f == $fstu && $id[1] == $idstu && $od[1] == $odstu && ($A[1] != $Astu || $B[1] != $Bstu) && ($C[1] != $Cstu || $D[1] != $Dstu)) ) { $self->setMessage(1, 'Check your limits of integration and order of integration.'); return 0.47; } else { return 0; } } ); |
Setup:
There are two separate cases: integrating with respect to
The |
BEGIN_PGML Set up a double integral in rectangular coordinates for calculating the volume of the solid under the graph of the function [` f(x,y) = [$f] `] over the region [` [$a] \leq x \leq [$b] `] and [` [$c] \leq y \leq [$d] `]. _Instructions:_ Please enter the integrand in the first answer box. Depending on the order of integration you choose, enter _dx_ and _dy_ in either order into the second and third answer boxes with only one _dx_ or _dy_ in each box. Then, enter the limits of integration and evaluate the integral to find the volume. [`` \int_A^B \int_C^D ``] [___________]{$multians} [_____]{$multians} [_____]{$multians} A = [_____________]{$multians} B = [_____________]{$multians} C = [_____________]{$multians} D = [_____________]{$multians} Volume = [___________________________]{$V} |
Main Text:
The only interesting thing to note here is that you must use |
BEGIN_PGML_SOLUTION Solution explanation goes here. END_PGML_SOLUTION COMMENT('Allows integration in either order. Uses PGML.'); ENDDOCUMENT(); |
Solution: |