Difference between revisions of "DoubleIntegral1"

From WeBWorK_wiki
Jump to navigation Jump to search
(add historical tag and give links to newer problems.)
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
  +
{{historical}}
  +
  +
<p style="font-size: 120%;font-weight:bold">This problem has been replaced with [https://openwebwork.github.io/pg-docs/sample-problems/IntegralCalc/DoubleIntegral.html a newer version of this problem]</p>
  +
 
<h2>Setting up a Double Integral</h2>
 
<h2>Setting up a Double Integral</h2>
   
Line 5: Line 9:
 
This PG code shows how to allow students to set up a double integral and integrate in either order.
 
This PG code shows how to allow students to set up a double integral and integrate in either order.
 
</p>
 
</p>
* File location in OPL: [https://github.com/openwebwork/webwork-open-problem-library/blob/master/OpenProblemLibrary/FortLewis/Authoring/Templates/IntegralCalcMV/DoubleIntegral1.pg FortLewis/Authoring/Templates/IntegralCalcMV/DoubleIntegral1.pg]
+
<!-- * File location in OPL: [https://github.com/openwebwork/webwork-open-problem-library/blob/master/OpenProblemLibrary/FortLewis/Authoring/Templates/IntegralCalcMV/DoubleIntegral1.pg FortLewis/Authoring/Templates/IntegralCalcMV/DoubleIntegral1.pg] -->
  +
* PGML location in OPL: [https://github.com/openwebwork/webwork-open-problem-library/blob/master/OpenProblemLibrary/FortLewis/Authoring/Templates/IntegralCalcMV/DoubleIntegral1_PGML.pg FortLewis/Authoring/Templates/IntegralCalcMV/DoubleIntegral1_PGML.pg]
   
 
<br clear="all" />
 
<br clear="all" />
Line 15: Line 19:
   
 
<tr valign="top">
 
<tr valign="top">
<th> PG problem file </th>
+
<th style="width: 50%"> PG problem file </th>
 
<th> Explanation </th>
 
<th> Explanation </th>
 
</tr>
 
</tr>
Line 64: Line 68:
 
<td style="background-color:#ffffdd;border:black 1px dashed;">
 
<td style="background-color:#ffffdd;border:black 1px dashed;">
 
<pre>
 
<pre>
Context("Numeric");
+
Context('Numeric');
 
Context()->variables->are(
 
Context()->variables->are(
x=>"Real",dx=>"Real",
+
x => 'Real',
y=>"Real",dy=>"Real");
+
dx => 'Real',
Context()->flags->set(reduceConstants=>0);
+
y => 'Real',
  +
dy => 'Real'
  +
);
  +
Context()->flags->set(reduceConstants => 0);
   
 
#
 
#
 
# limits of integration
 
# limits of integration
 
#
 
#
$a = random(1,5,1);
+
$a = random(1, 5, 1);
$b = $a + random(1,4,1);
+
$b = $a + random(1, 4, 1);
do { $c = random(1,5,1); } until ($c != $a);
+
do { $c = random(1, 5, 1); } until ($c != $a);
do { $d = $c + random(1,4,1); } until ($d != $b);
+
do { $d = $c + random(1, 4, 1); } until ($d != $b);
   
 
#
 
#
 
# integrand and volume
 
# integrand and volume
 
#
 
#
$f = Formula("x*y");
+
$f = Formula('x*y');
 
$V = Formula("($b^2-$a^2) * ($d^2-$c^2) / 4");
 
$V = Formula("($b^2-$a^2) * ($d^2-$c^2) / 4");
 
   
 
#
 
#
 
# differentials and limits of integration
 
# differentials and limits of integration
 
#
 
#
# Case 0, element 0 of each array below, is
+
# Case 0, element 0 of each array below, is
 
# if the order of integration is dx dy
 
# if the order of integration is dx dy
 
#
 
#
 
# Case 1, element 1 of each array below, is
 
# Case 1, element 1 of each array below, is
 
# if the order of integration is dy dx
 
# if the order of integration is dy dx
#
 
# "id" and "od" stand for inner and outer differential
 
 
#
 
#
@id = (Formula("dx"),Formula("dy")); # (case 0, case 1)
 
  +
# 'id' and 'od' stand for inner and outer differential
@od = (Formula("dy"),Formula("dx")); # (case 0, case 1)
 
  +
#
  +
@id = (Formula('dx'), Formula('dy')); # (case 0, case 1)
  +
@od = (Formula('dy'), Formula('dx')); # (case 0, case 1)
 
#
 
#
 
# A = outer integral, lower limit
 
# A = outer integral, lower limit
Line 104: Line 107:
 
# D = inner integral, upper limit
 
# D = inner integral, upper limit
 
#
 
#
@A = (Formula("$c"),Formula("$a")); # (case 0, case 1)
+
@A = (Formula("$c"), Formula("$a")); # (case 0, case 1)
@B = (Formula("$d"),Formula("$b")); # (case 0, case 1)
+
@B = (Formula("$d"), Formula("$b")); # (case 0, case 1)
@C = (Formula("$a"),Formula("$c")); # (case 0, case 1)
+
@C = (Formula("$a"), Formula("$c")); # (case 0, case 1)
@D = (Formula("$b"),Formula("$d")); # (case 0, case 1)
+
@D = (Formula("$b"), Formula("$d")); # (case 0, case 1)
 
   
$multians = MultiAnswer( $f, $id[0], $od[0], $A[0], $B[0], $C[0], $D[0] )->with(
+
$multians = MultiAnswer($f, $id[0], $od[0], $A[0], $B[0], $C[0], $D[0])->with(
singleResult => 1,
+
singleResult => 1,
checker => sub {
+
checker => sub {
my ( $correct, $student, $self ) = @_;
+
my ($correct, $student, $self) = @_;
my ( $fstu, $idstu, $odstu, $Astu, $Bstu, $Cstu, $Dstu ) = @{$student};
+
my ($fstu, $idstu, $odstu, $Astu, $Bstu, $Cstu, $Dstu) = @{$student};
if (
+
if (
(
+
(
$f == $fstu &&
+
$f == $fstu
$id[0] == $idstu &&
+
&& $id[0] == $idstu
$od[0] == $odstu &&
+
&& $od[0] == $odstu
$A[0] == $Astu &&
+
&& $A[0] == $Astu
$B[0] == $Bstu &&
+
&& $B[0] == $Bstu
$C[0] == $Cstu &&
+
&& $C[0] == $Cstu
$D[0] == $Dstu
+
&& $D[0] == $Dstu
)
+
)
||
+
|| ($f == $fstu
(
+
&& $id[1] == $idstu
$f == $fstu &&
+
&& $od[1] == $odstu
$id[1] == $idstu &&
+
&& $A[1] == $Astu
$od[1] == $odstu &&
+
&& $B[1] == $Bstu
$A[1] == $Astu &&
+
&& $C[1] == $Cstu
$B[1] == $Bstu &&
+
&& $D[1] == $Dstu)
$C[1] == $Cstu &&
+
)
$D[1] == $Dstu
+
{
)
+
return 1;
) {
+
} elsif (
return 1;
+
(
} elsif (
+
$f == $fstu
(
+
&& $id[0] == $idstu
$f == $fstu &&
+
&& $od[0] == $odstu
$id[0] == $idstu &&
+
&& ($A[0] != $Astu || $B[0] != $Bstu)
$od[0] == $odstu &&
+
&& $C[0] == $Cstu
($A[0] != $Astu || $B[0] != $Bstu) &&
+
&& $D[0] == $Dstu
$C[0] == $Cstu &&
+
)
$D[0] == $Dstu
+
|| ($f == $fstu
)
+
&& $id[1] == $idstu
||
+
&& $od[1] == $odstu
(
+
&& ($A[1] != $Astu || $B[1] != $Bstu)
$f == $fstu &&
+
&& $C[1] == $Cstu
$id[1] == $idstu &&
+
&& $D[1] == $Dstu)
$od[1] == $odstu &&
+
|| ($f == $fstu
($A[1] != $Astu || $B[1] != $Bstu) &&
+
&& $id[0] == $idstu
$C[1] == $Cstu &&
+
&& $od[0] == $odstu
$D[1] == $Dstu
+
&& $A[0] == $Astu
)
+
&& $B[0] == $Bstu
||
+
&& ($C[0] != $Cstu || $D[0] != $Dstu))
(
+
|| ($f == $fstu
$f == $fstu &&
+
&& $id[1] == $idstu
$id[0] == $idstu &&
+
&& $od[1] == $odstu
$od[0] == $odstu &&
+
&& $A[1] == $Astu
$A[0] == $Astu &&
+
&& $B[1] == $Bstu
$B[0] == $Bstu &&
+
&& ($C[1] != $Cstu || $D[1] != $Dstu))
($C[0] != $Cstu || $D[0] != $Dstu)
+
)
)
+
{
||
+
$self->setMessage(1, 'Check your limits of integration.');
(
+
return 0.94;
$f == $fstu &&
+
} elsif (
$id[1] == $idstu &&
+
(
$od[1] == $odstu &&
+
$f == $fstu
$A[1] == $Astu &&
+
&& $id[0] == $idstu
$B[1] == $Bstu &&
+
&& $od[0] == $odstu
($C[1] != $Cstu || $D[1] != $Dstu)
+
&& ($A[0] != $Astu || $B[0] != $Bstu)
)
+
&& ($C[0] != $Cstu || $D[0] != $Dstu)
) {
+
)
$self->setMessage(1,"Check your limits of integration.");
+
|| ($f == $fstu
return 0.94;
+
&& $id[1] == $idstu
} elsif (
+
&& $od[1] == $odstu
(
+
&& ($A[1] != $Astu || $B[1] != $Bstu)
$f == $fstu &&
+
&& ($C[1] != $Cstu || $D[1] != $Dstu))
$id[0] == $idstu &&
+
)
$od[0] == $odstu &&
+
{
($A[0] != $Astu || $B[0] != $Bstu) &&
+
$self->setMessage(1, 'Check your limits of integration and order of integration.');
($C[0] != $Cstu || $D[0] != $Dstu)
+
return 0.47;
)
+
} else {
||
+
return 0;
(
+
}
$f == $fstu &&
+
}
$id[1] == $idstu &&
 
$od[1] == $odstu &&
 
($A[1] != $Astu || $B[1] != $Bstu) &&
 
($C[1] != $Cstu || $D[1] != $Dstu)
 
)
 
) {
 
$self->setMessage(1,
 
"Check your limits of integration and order of integration.");
 
return 0.47;
 
} else {
 
return 0;
 
}
 
}
 
 
);
 
);
 
</pre>
 
</pre>
Line 205: Line 208:
 
<td style="background-color:#ffdddd;border:black 1px dashed;">
 
<td style="background-color:#ffdddd;border:black 1px dashed;">
 
<pre>
 
<pre>
Context()->texStrings;
 
  +
BEGIN_PGML
BEGIN_TEXT
 
 
Set up a double integral in rectangular coordinates
 
Set up a double integral in rectangular coordinates
for calculating the volume of the solid under the
+
for calculating the volume of the solid under the
graph of the function \( f(x,y) = $f \) over the
+
graph of the function [` f(x,y) = [$f] `] over the
region \( $a \leq x \leq $b \) and \( $c \leq y \leq $d \).
+
region [` [$a] \leq x \leq [$b] `] and [` [$c] \leq y \leq [$d] `].
$BR
 
$BR
 
${BITALIC}Instructions:${EITALIC}
 
Please enter the integrand in the first answer box.
 
Depending on the order of integration you choose,
 
enter ${BITALIC}dx${EITALIC} and ${BITALIC}dy${EITALIC}
 
in either order into the second and third answer boxes
 
with only one ${BITALIC}dx${EITALIC} or
 
${BITALIC}dy${EITALIC} in each box. Then, enter the limits of
 
integration and evaluate the integral to find the volume.
 
$BR
 
$BR
 
\( \displaystyle \int_A^B \int_C^D \)
 
\{ $multians->ans_rule(40) \}
 
\{ $multians->ans_rule(5) \}
 
\{ $multians->ans_rule(5) \}
 
$BR
 
$BR
 
A = \{ $multians->ans_rule(20) \} $BR
 
B = \{ $multians->ans_rule(20) \} $BR
 
C = \{ $multians->ans_rule(20) \} $BR
 
D = \{ $multians->ans_rule(20) \}
 
$BR
 
$BR
 
Volume = \{ ans_rule(40) \}
 
END_TEXT
 
Context()->normalStrings;
 
</pre>
 
<td style="background-color:#ffcccc;padding:7px;">
 
<p>
 
<b>Main Text:</b>
 
The only interesting thing to note here is that you must use <code>$multians-&gt;ans_rule(20)</code> to make each answer blank known to the object <code>$multians</code>.
 
</p>
 
</td>
 
</tr>
 
   
<!-- Answer evaluation section -->
 
  +
_Instructions:_
  +
Please enter the integrand in the first answer box.
  +
Depending on the order of integration you choose,
  +
enter _dx_ and _dy_
  +
in either order into the second and third answer boxes
  +
with only one _dx_ or _dy_ in each box.
  +
Then, enter the limits of
  +
integration and evaluate the integral to find the volume.
   
<tr valign="top">
 
  +
[`` \int_A^B \int_C^D ``]
<td style="background-color:#eeddff;border:black 1px dashed;">
 
  +
[___________]{$multians} [_____]{$multians} [_____]{$multians}
<pre>
 
$showPartialCorrectAnswers = 1;
 
   
ANS( $multians->cmp() );
 
  +
A = [_____________]{$multians}
ANS( $V->cmp() );
 
  +
B = [_____________]{$multians}
  +
C = [_____________]{$multians}
  +
D = [_____________]{$multians}
  +
  +
Volume = [___________________________]{$V}
 
</pre>
 
</pre>
<td style="background-color:#eeccff;padding:7px;">
+
<td style="background-color:#ffcccc;padding:7px;">
 
<p>
 
<p>
<b>Answer Evaluation:</b>
+
<b>Main Text:</b>
  +
The only interesting thing to note here is that you must use <code>$multians</code> for each answer blank (except the last one, which is independent.)
 
</p>
 
</p>
 
</td>
 
</td>
Line 234: Line 245:
 
<td style="background-color:#ddddff;border:black 1px dashed;">
 
<td style="background-color:#ddddff;border:black 1px dashed;">
 
<pre>
 
<pre>
Context()->texStrings;
 
  +
BEGIN_PGML_SOLUTION
BEGIN_SOLUTION
 
 
Solution explanation goes here.
 
Solution explanation goes here.
END_SOLUTION
 
  +
END_PGML_SOLUTION
Context()->normalStrings;
 
 
   
COMMENT('MathObject version. Allows integration in either order.');
+
COMMENT('Allows integration in either order. Uses PGML.');
 
ENDDOCUMENT();
 
ENDDOCUMENT();
 
</pre>
 
</pre>

Latest revision as of 05:29, 18 July 2023

This article has been retained as a historical document. It is not up-to-date and the formatting may be lacking. Use the information herein with caution.

This problem has been replaced with a newer version of this problem

Setting up a Double Integral

Click to enlarge

This PG code shows how to allow students to set up a double integral and integrate in either order.


Templates by Subject Area

PG problem file Explanation

Problem tagging data

Problem tagging:

DOCUMENT();        

loadMacros(
"PGstandard.pl",
"MathObjects.pl",
"parserMultiAnswer.pl",
);

TEXT(beginproblem());

Initialization: Since there are multiple answer blanks that are dependent upon each other, we use parserMultiAnswer.pl.

Context('Numeric');
Context()->variables->are(
	x  => 'Real',
	dx => 'Real',
	y  => 'Real',
	dy => 'Real'
);
Context()->flags->set(reduceConstants => 0);

#
#  limits of integration
#
$a = random(1, 5, 1);
$b = $a + random(1, 4, 1);
do { $c = random(1, 5, 1); }      until ($c != $a);
do { $d = $c + random(1, 4, 1); } until ($d != $b);

#
#  integrand and volume
#
$f = Formula('x*y');
$V = Formula("($b^2-$a^2) * ($d^2-$c^2) / 4");

#
#  differentials and limits of integration
#
#  Case 0, element 0 of each array below, is
#  if the order of integration is dx dy
#
#  Case 1, element 1 of each array below, is
#  if the order of integration is dy dx
#
#  'id' and 'od' stand for inner and outer differential
#
@id = (Formula('dx'), Formula('dy'));    # (case 0, case 1)
@od = (Formula('dy'), Formula('dx'));    # (case 0, case 1)
#
#  A = outer integral, lower limit
#  B = outer integral, upper limit
#  C = inner integral, lower limit
#  D = inner integral, upper limit
#
@A = (Formula("$c"), Formula("$a"));    # (case 0, case 1)
@B = (Formula("$d"), Formula("$b"));    # (case 0, case 1)
@C = (Formula("$a"), Formula("$c"));    # (case 0, case 1)
@D = (Formula("$b"), Formula("$d"));    # (case 0, case 1)

$multians = MultiAnswer($f, $id[0], $od[0], $A[0], $B[0], $C[0], $D[0])->with(
	singleResult => 1,
	checker      => sub {
		my ($correct, $student, $self) = @_;
		my ($fstu, $idstu, $odstu, $Astu, $Bstu, $Cstu, $Dstu) = @{$student};
		if (
			(
				$f == $fstu
				&& $id[0] == $idstu
				&& $od[0] == $odstu
				&& $A[0] == $Astu
				&& $B[0] == $Bstu
				&& $C[0] == $Cstu
				&& $D[0] == $Dstu
			)
			|| ($f == $fstu
				&& $id[1] == $idstu
				&& $od[1] == $odstu
				&& $A[1] == $Astu
				&& $B[1] == $Bstu
				&& $C[1] == $Cstu
				&& $D[1] == $Dstu)
			)
		{
			return 1;
		} elsif (
			(
				$f == $fstu
				&& $id[0] == $idstu
				&& $od[0] == $odstu
				&& ($A[0] != $Astu || $B[0] != $Bstu)
				&& $C[0] == $Cstu
				&& $D[0] == $Dstu
			)
			|| ($f == $fstu
				&& $id[1] == $idstu
				&& $od[1] == $odstu
				&& ($A[1] != $Astu || $B[1] != $Bstu)
				&& $C[1] == $Cstu
				&& $D[1] == $Dstu)
			|| ($f == $fstu
				&& $id[0] == $idstu
				&& $od[0] == $odstu
				&& $A[0] == $Astu
				&& $B[0] == $Bstu
				&& ($C[0] != $Cstu || $D[0] != $Dstu))
			|| ($f == $fstu
				&& $id[1] == $idstu
				&& $od[1] == $odstu
				&& $A[1] == $Astu
				&& $B[1] == $Bstu
				&& ($C[1] != $Cstu || $D[1] != $Dstu))
			)
		{
			$self->setMessage(1, 'Check your limits of integration.');
			return 0.94;
		} elsif (
			(
				$f == $fstu
				&& $id[0] == $idstu
				&& $od[0] == $odstu
				&& ($A[0] != $Astu || $B[0] != $Bstu)
				&& ($C[0] != $Cstu || $D[0] != $Dstu)
			)
			|| ($f == $fstu
				&& $id[1] == $idstu
				&& $od[1] == $odstu
				&& ($A[1] != $Astu || $B[1] != $Bstu)
				&& ($C[1] != $Cstu || $D[1] != $Dstu))
			)
		{
			$self->setMessage(1, 'Check your limits of integration and order of integration.');
			return 0.47;
		} else {
			return 0;
		}
	}
);

Setup: There are two separate cases: integrating with respect to dx dy (which we call case 0) or with respect to dy dx (which we call case 1). The zeroth and first entries in each of the arrays @id, @od, @A, @B, @C, @D hold the values for case 0 and case 1, respectively. We used constant limits of integration to keep this example easy to follow, but we encourage you to write questions over non-rectangular regions.

The $multians object has been compartmentalized, so you shouldn't need to change it unless you want to fiddle with the weighted score for each answer blank (by changing the return values). The return values are set so that the percentages come out nicely.

BEGIN_PGML
Set up a double integral in rectangular coordinates
for calculating the volume of the solid under the
graph of the function [` f(x,y) = [$f] `] over the
region [` [$a] \leq x \leq [$b] `] and [` [$c] \leq y \leq [$d] `].

_Instructions:_
Please enter the integrand in the first answer box.
Depending on the order of integration you choose,
enter _dx_ and _dy_
in either order into the second and third answer boxes
with only one _dx_ or _dy_ in each box.
Then, enter the limits of
integration and evaluate the integral to find the volume.

[`` \int_A^B \int_C^D ``]
[___________]{$multians} [_____]{$multians} [_____]{$multians}

A = [_____________]{$multians}
B = [_____________]{$multians}
C = [_____________]{$multians}
D = [_____________]{$multians}

Volume = [___________________________]{$V}

Main Text: The only interesting thing to note here is that you must use $multians for each answer blank (except the last one, which is independent.)

BEGIN_PGML_SOLUTION
Solution explanation goes here.
END_PGML_SOLUTION

COMMENT('Allows integration in either order.  Uses PGML.');
ENDDOCUMENT();

Solution:

Templates by Subject Area