Difference between revisions of "HowToEnterMathSymbols"
Line 17: | Line 17: | ||
== Example == |
== Example == |
||
− | == Latex Code == |
+ | === Latex Code === |
<syntaxhighlight lang="latex"> |
<syntaxhighlight lang="latex"> |
||
Line 49: | Line 49: | ||
at the end of the paper. |
at the end of the paper. |
||
</syntaxhighlight> |
</syntaxhighlight> |
||
+ | |||
(Which comes from a preprint of ''Jon M. Borwein, et. al. Some arithmetic properties of short random walk integrals.'') |
(Which comes from a preprint of ''Jon M. Borwein, et. al. Some arithmetic properties of short random walk integrals.'') |
||
Revision as of 10:05, 24 July 2012
We use the MathJax Extension by Dirk Nuyens. This extension enables MathJax (http://www.mathjax.org/) which is a Javascript library written by Davide Cervone.
Usage
The following math environments are defined for inline style math:
$...$
(can be turned off, even per page),\(...\)
and<math>...</math>
.
And the following math environments are defined for display style math:
$$...$$
(can be turned off, even per page),\[...\]
,\begin{...}...\end{...}
and:<math>...</math>
.
MathJax produces nice and scalable mathematics, see their website (http://www.mathjax.org/) for a demonstration. This extension also enables the usage of \label{}
and \eqref{}
tags with automatic formula numbering. If needed you can still hand label by using \tag{}
.
Example
Latex Code
<syntaxhighlight lang="latex"> $
\newcommand{\Re}{\mathrm{Re}\,} \newcommand{\pFq}[5]{{}_{#1}\mathrm{F}_{#2} \left( \genfrac{}{}{0pt}{}{#3}{#4} \bigg| {#5} \right)}
$
We consider, for various values of $s$, the $n$-dimensional integral \begin{align}
\label{def:Wns} W_n (s) &:= \int_{[0, 1]^n} \left| \sum_{k = 1}^n \mathrm{e}^{2 \pi \mathrm{i} \, x_k} \right|^s \mathrm{d}\boldsymbol{x}
\end{align} which occurs in the theory of uniform random walk integrals in the plane, where at each step a unit-step is taken in a random direction. As such, the integral \eqref{def:Wns} expresses the $s$-th moment of the distance to the origin after $n$ steps.
By experimentation and some sketchy arguments we quickly conjectured and strongly believed that, for $k$ a nonnegative integer \begin{align}
\label{eq:W3k} W_3(k) &= \Re \, \pFq32{\frac12, -\frac k2, -\frac k2}{1, 1}{4}.
\end{align} Appropriately defined, \eqref{eq:W3k} also holds for negative odd integers. The reason for \eqref{eq:W3k} was long a mystery, but it will be explained at the end of the paper. </syntaxhighlight>
(Which comes from a preprint of Jon M. Borwein, et. al. Some arithmetic properties of short random walk integrals.)
Rendered text
This renders as http://www.cs.kuleuven.be/~dirkn/Extension_MathJax/MathJaxExample.png.
$
\newcommand{\Re}{\mathrm{Re}\,} \newcommand{\pFq}[5]{{}_{#1}\mathrm{F}_{#2} \left( \genfrac{}{}{0pt}{}{#3}{#4} \bigg| {#5} \right)}
$
We consider, for various values of $s$, the $n$-dimensional integral \begin{align}
\label{def:Wns} W_n (s) &:= \int_{[0, 1]^n} \left| \sum_{k = 1}^n \mathrm{e}^{2 \pi \mathrm{i} \, x_k} \right|^s \mathrm{d}\boldsymbol{x}
\end{align} which occurs in the theory of uniform random walk integrals in the plane, where at each step a unit-step is taken in a random direction. As such, the integral \eqref{def:Wns} expresses the $s$-th moment of the distance to the origin after $n$ steps.
By experimentation and some sketchy arguments we quickly conjectured and strongly believed that, for $k$ a nonnegative integer \begin{align}
\label{eq:W3k} W_3(k) &= \Re \, \pFq32{\frac12, -\frac k2, -\frac k2}{1, 1}{4}.
\end{align} Appropriately defined, \eqref{eq:W3k} also holds for negative odd integers. The reason for \eqref{eq:W3k} was long a mystery, but it will be explained at the end of the paper.
Additional Information
This documentation comes from the MathJax Extension page. Additional documentation on using MathJax can be found at www.mathjax.org.