Difference between revisions of "DoubleIntegral1"
(Created page with '<h2>Setting up a Double Integral</h2> 300px|thumb|right|Click to enlarge <p style="background-color:#f9f9f9;border:black solid 1px;padding:3px;"> Th…') |
|||
Line 208: | Line 208: | ||
<b>Setup:</b> |
<b>Setup:</b> |
||
There are two separate cases: integrating with respect to <code>dx dy</code> (which we call case 0) or with respect to <code>dy dx</code> (which we call case 1). The zeroth and first entries in each of the arrays <code>@id, @od, @A, @B, @C, @D</code> hold the values for case 0 and case 1, respectively. We used constant limits of integration to keep this example easy to follow, but we encourage you to write questions over non-rectangular regions. |
There are two separate cases: integrating with respect to <code>dx dy</code> (which we call case 0) or with respect to <code>dy dx</code> (which we call case 1). The zeroth and first entries in each of the arrays <code>@id, @od, @A, @B, @C, @D</code> hold the values for case 0 and case 1, respectively. We used constant limits of integration to keep this example easy to follow, but we encourage you to write questions over non-rectangular regions. |
||
+ | </p> |
||
+ | <p> |
||
+ | The <code>$multians</code> object has been compartmentalized, so you shouldn't need to change it unless you want to fiddle with the weighted score for each answer blank (by changing the return values). The return values are set so that the percentages come out nicely. |
||
</p> |
</p> |
||
</td> |
</td> |
Revision as of 13:34, 20 December 2010
Setting up a Double Integral
This PG code shows how to allow students to set up a double integral and integrate in either order.
- Download file: File:DoubleIntegral1.txt (change the file extension from txt to pg when you save it)
- File location in NPL:
FortLewis/Authoring/Templates/IntegralCalcMV/DoubleIntegral1.pg
PG problem file | Explanation |
---|---|
Problem tagging: |
|
DOCUMENT(); loadMacros( "PGstandard.pl", "MathObjects.pl", "parserMultiAnswer.pl", ); TEXT(beginproblem()); |
Initialization:
Since there are multiple answer blanks that are dependent upon each other, we use |
Context("Numeric"); Context()->variables->are( x=>"Real",dx=>"Real", y=>"Real",dy=>"Real"); Context()->flags->set(reduceConstants=>0); # # limits of integration # $a = random(1,5,1); $b = $a + random(1,4,1); do { $c = random(1,5,1); } until ($c != $a); do { $d = $c + random(1,4,1); } until ($d != $b); # # integrand and volume # $f = Formula("x*y"); $V = Formula("($b^2-$a^2) * ($d^2-$c^2) / 4"); # # differentials and limits of integration # # Case 0, element 0 of each array below, is # if the order of integration is dx dy # # Case 1, element 1 of each array below, is # if the order of integration is dy dx # # "id" and "od" stand for inner and outer differential # @id = (Formula("dx"),Formula("dy")); # (case 0, case 1) @od = (Formula("dy"),Formula("dx")); # (case 0, case 1) # # A = outer integral, lower limit # B = outer integral, upper limit # C = inner integral, lower limit # D = inner integral, upper limit # @A = (Formula("$c"),Formula("$a")); # (case 0, case 1) @B = (Formula("$d"),Formula("$b")); # (case 0, case 1) @C = (Formula("$a"),Formula("$c")); # (case 0, case 1) @D = (Formula("$b"),Formula("$d")); # (case 0, case 1) $multians = MultiAnswer( $f, $id[0], $od[0], $A[0], $B[0], $C[0], $D[0] )->with( singleResult => 1, checker => sub { my ( $correct, $student, $self ) = @_; my ( $fstu, $idstu, $odstu, $Astu, $Bstu, $Cstu, $Dstu ) = @{$student}; if ( ( $f == $fstu && $id[0] == $idstu && $od[0] == $odstu && $A[0] == $Astu && $B[0] == $Bstu && $C[0] == $Cstu && $D[0] == $Dstu ) || ( $f == $fstu && $id[1] == $idstu && $od[1] == $odstu && $A[1] == $Astu && $B[1] == $Bstu && $C[1] == $Cstu && $D[1] == $Dstu ) ) { return 1; } elsif ( ( $f == $fstu && $id[0] == $idstu && $od[0] == $odstu && ($A[0] != $Astu || $B[0] != $Bstu) && $C[0] == $Cstu && $D[0] == $Dstu ) || ( $f == $fstu && $id[1] == $idstu && $od[1] == $odstu && ($A[1] != $Astu || $B[1] != $Bstu) && $C[1] == $Cstu && $D[1] == $Dstu ) || ( $f == $fstu && $id[0] == $idstu && $od[0] == $odstu && $A[0] == $Astu && $B[0] == $Bstu && ($C[0] != $Cstu || $D[0] != $Dstu) ) || ( $f == $fstu && $id[1] == $idstu && $od[1] == $odstu && $A[1] == $Astu && $B[1] == $Bstu && ($C[1] != $Cstu || $D[1] != $Dstu) ) ) { $self->setMessage(1,"Check your limits of integration."); return 0.94; } elsif ( ( $f == $fstu && $id[0] == $idstu && $od[0] == $odstu && ($A[0] != $Astu || $B[0] != $Bstu) && ($C[0] != $Cstu || $D[0] != $Dstu) ) || ( $f == $fstu && $id[1] == $idstu && $od[1] == $odstu && ($A[1] != $Astu || $B[1] != $Bstu) && ($C[1] != $Cstu || $D[1] != $Dstu) ) ) { $self->setMessage(1, "Check your limits of integration and order of integration."); return 0.47; } else { return 0; } } ); |
Setup:
There are two separate cases: integrating with respect to
The |
Context()->texStrings; BEGIN_TEXT Set up a double integral in rectangular coordinates for calculating the volume of the solid under the graph of the function \( f(x,y) = $f \) over the region \( $a \leq x \leq $b \) and \( $c \leq y \leq $d \). $BR $BR ${BITALIC}Instructions:${EITALIC} Please enter the integrand in the first answer box. Depending on the order of integration you choose, enter ${BITALIC}dx${EITALIC} and ${BITALIC}dy${EITALIC} in either order into the second and third answer boxes with only one ${BITALIC}dx${EITALIC} or ${BITALIC}dy${EITALIC} in each box. Then, enter the limits of integration and evaluate the integral to find the volume. $BR $BR \( \displaystyle \int_A^B \int_C^D \) \{ $multians->ans_rule(40) \} \{ $multians->ans_rule(5) \} \{ $multians->ans_rule(5) \} $BR $BR A = \{ $multians->ans_rule(20) \} $BR B = \{ $multians->ans_rule(20) \} $BR C = \{ $multians->ans_rule(20) \} $BR D = \{ $multians->ans_rule(20) \} $BR $BR Volume = \{ ans_rule(40) \} END_TEXT Context()->normalStrings; |
Main Text:
The only interesting thing to note here is that you must use |
$showPartialCorrectAnswers = 1; ANS( $multians->cmp() ); ANS( $V->cmp() ); |
Answer Evaluation: |
Context()->texStrings; BEGIN_SOLUTION ${PAR}SOLUTION:${PAR} Solution explanation goes here. END_SOLUTION Context()->normalStrings; COMMENT('MathObject version. Allows integration in either order.'); ENDDOCUMENT(); |
Solution: |