DoubleIntegral1
Setting up a Double Integral
This PG code shows how to allow students to set up a double integral and integrate in either order.
- File location in OPL: FortLewis/Authoring/Templates/IntegralCalcMV/DoubleIntegral1.pg
- PGML location in OPL: FortLewis/Authoring/Templates/IntegralCalcMV/DoubleIntegral1_PGML.pg
PG problem file | Explanation |
---|---|
Problem tagging: |
|
DOCUMENT(); loadMacros( "PGstandard.pl", "MathObjects.pl", "parserMultiAnswer.pl", ); TEXT(beginproblem()); |
Initialization:
Since there are multiple answer blanks that are dependent upon each other, we use |
Context("Numeric"); Context()->variables->are( x=>"Real",dx=>"Real", y=>"Real",dy=>"Real"); Context()->flags->set(reduceConstants=>0); # # limits of integration # $a = random(1,5,1); $b = $a + random(1,4,1); do { $c = random(1,5,1); } until ($c != $a); do { $d = $c + random(1,4,1); } until ($d != $b); # # integrand and volume # $f = Formula("x*y"); $V = Formula("($b^2-$a^2) * ($d^2-$c^2) / 4"); # # differentials and limits of integration # # Case 0, element 0 of each array below, is # if the order of integration is dx dy # # Case 1, element 1 of each array below, is # if the order of integration is dy dx # # "id" and "od" stand for inner and outer differential # @id = (Formula("dx"),Formula("dy")); # (case 0, case 1) @od = (Formula("dy"),Formula("dx")); # (case 0, case 1) # # A = outer integral, lower limit # B = outer integral, upper limit # C = inner integral, lower limit # D = inner integral, upper limit # @A = (Formula("$c"),Formula("$a")); # (case 0, case 1) @B = (Formula("$d"),Formula("$b")); # (case 0, case 1) @C = (Formula("$a"),Formula("$c")); # (case 0, case 1) @D = (Formula("$b"),Formula("$d")); # (case 0, case 1) $multians = MultiAnswer( $f, $id[0], $od[0], $A[0], $B[0], $C[0], $D[0] )->with( singleResult => 1, checker => sub { my ( $correct, $student, $self ) = @_; my ( $fstu, $idstu, $odstu, $Astu, $Bstu, $Cstu, $Dstu ) = @{$student}; if ( ( $f == $fstu && $id[0] == $idstu && $od[0] == $odstu && $A[0] == $Astu && $B[0] == $Bstu && $C[0] == $Cstu && $D[0] == $Dstu ) || ( $f == $fstu && $id[1] == $idstu && $od[1] == $odstu && $A[1] == $Astu && $B[1] == $Bstu && $C[1] == $Cstu && $D[1] == $Dstu ) ) { return 1; } elsif ( ( $f == $fstu && $id[0] == $idstu && $od[0] == $odstu && ($A[0] != $Astu || $B[0] != $Bstu) && $C[0] == $Cstu && $D[0] == $Dstu ) || ( $f == $fstu && $id[1] == $idstu && $od[1] == $odstu && ($A[1] != $Astu || $B[1] != $Bstu) && $C[1] == $Cstu && $D[1] == $Dstu ) || ( $f == $fstu && $id[0] == $idstu && $od[0] == $odstu && $A[0] == $Astu && $B[0] == $Bstu && ($C[0] != $Cstu || $D[0] != $Dstu) ) || ( $f == $fstu && $id[1] == $idstu && $od[1] == $odstu && $A[1] == $Astu && $B[1] == $Bstu && ($C[1] != $Cstu || $D[1] != $Dstu) ) ) { $self->setMessage(1,"Check your limits of integration."); return 0.94; } elsif ( ( $f == $fstu && $id[0] == $idstu && $od[0] == $odstu && ($A[0] != $Astu || $B[0] != $Bstu) && ($C[0] != $Cstu || $D[0] != $Dstu) ) || ( $f == $fstu && $id[1] == $idstu && $od[1] == $odstu && ($A[1] != $Astu || $B[1] != $Bstu) && ($C[1] != $Cstu || $D[1] != $Dstu) ) ) { $self->setMessage(1, "Check your limits of integration and order of integration."); return 0.47; } else { return 0; } } ); |
Setup:
There are two separate cases: integrating with respect to
The |
Context()->texStrings; BEGIN_TEXT Set up a double integral in rectangular coordinates for calculating the volume of the solid under the graph of the function \( f(x,y) = $f \) over the region \( $a \leq x \leq $b \) and \( $c \leq y \leq $d \). $BR $BR ${BITALIC}Instructions:${EITALIC} Please enter the integrand in the first answer box. Depending on the order of integration you choose, enter ${BITALIC}dx${EITALIC} and ${BITALIC}dy${EITALIC} in either order into the second and third answer boxes with only one ${BITALIC}dx${EITALIC} or ${BITALIC}dy${EITALIC} in each box. Then, enter the limits of integration and evaluate the integral to find the volume. $BR $BR \( \displaystyle \int_A^B \int_C^D \) \{ $multians->ans_rule(40) \} \{ $multians->ans_rule(5) \} \{ $multians->ans_rule(5) \} $BR $BR A = \{ $multians->ans_rule(20) \} $BR B = \{ $multians->ans_rule(20) \} $BR C = \{ $multians->ans_rule(20) \} $BR D = \{ $multians->ans_rule(20) \} $BR $BR Volume = \{ ans_rule(40) \} END_TEXT Context()->normalStrings; |
Main Text:
The only interesting thing to note here is that you must use |
$showPartialCorrectAnswers = 1; ANS( $multians->cmp() ); ANS( $V->cmp() ); |
Answer Evaluation: |
Context()->texStrings; BEGIN_SOLUTION Solution explanation goes here. END_SOLUTION Context()->normalStrings; COMMENT('MathObject version. Allows integration in either order.'); ENDDOCUMENT(); |
Solution: |