Sage in WeBWorK
Jump to navigation
Jump to search
Sage is an open source, online symbolic mathematical system. Details on Sage can be found at http://www.sagemath.org .
For use within WebWork, a special "single-cell" version of Sage is located at http://sagemath.org:5467
## First Homework Problem File for ## Calculus ## Partial Derivatives ## Unit 1 ## DOCUMENT(); loadMacros( "PGstandard.pl", "PGchoicemacros.pl", "MathObjects.pl", ); Context()->strings->add(none=>{}); TEXT(beginproblem()); $x0 = non_zero_random(-2,2,1); $y0 = non_zero_random(-2,2,1); $f0 = ($x0**3-$y0**3)/($x0**2+$y0**2+1); TEXT(<<EOF);
<script type="text/code"> ######### Sage code pasted starting here ########## var('x,y,t,s') # M=x*y N=-y @interact(layout=dict(left= [['x0'],['y0'],['delx'],['dely']], bottom=[['xx'],['yy']])) def _( x0 = input_box(0,width=5,label='$x_0$'), y0 = input_box(0,width=5,label='$y_0$'), delx = input_box(1,width=5,label='$\Delta{x}$'), dely = input_box(1,width=5,label='$\Delta{y}$'), xx = range_slider(-5, 5, 1, default=(-2,2), label='x Range'), yy = range_slider(-5, 5, 1, default=(-1,3), label='y Range')): G = plot_vector_field((M,N),(x,xx[0],xx[1]),(y,yy[0],yy[1]),aspect_ratio=true) G += arrow((x0,y0),(x0+delx,y0+dely)) show(G) ############## End of Sage Code ###################### </script>
<script type="text/javascript" src="http://sagemath.org:5467/static/jquery-1.5.min.js"></script> <script type="text/javascript" src="http://sagemath.org:5467/embedded_singlecell.js"></script> <script type="text/javascript"> $(function() { // load only when the page is loaded var makecells = function() { singlecell.makeSinglecell({ inputLocation: "#singlecell-test", editor: "codemirror", hide: ["editor","computationID","files","messages","sageMode"], evalButtonText: "Start/Restart", replaceOutput: true}); } singlecell.init(makecells); // load Single Cell libraries and then // initialize Single Cell instances }); </script> EOF ############### Below is the normal WebWork pg stuff ##################### Context()->texStrings; BEGIN_TEXT Using the contour plot below, determine the range value of the illustrated function at \( ($x0,$y0) \). $BR $BR \( f($x0,$y0) = \)\{ ans_rule(15) \} $PAR END_TEXT Context()->normalStrings; # need to add reasonable approximation error of about 0.1 or so. ANS( Compute($f0)->cmp() ); ENDDOCUMENT(); # This should be the last executable line in the problem.
To pass perl variables to the sage block if you need to from the problem initialization use:
- TEXT(<<EOF);
where <<EOF allows interpolation
otherwise use:
- TEXT(<<'EOF');
where 'EOF' tells perl not to interpolate variables