HowToEnterMathSymbols
We use the MathJax Extension by Dirk Nuyens. This extension enables MathJax (http://www.mathjax.org/) which is a Javascript library written by Davide Cervone.
Usage
The following math environments are defined for inline style math:
\(...\)
and<math>...</math>
.
And the following math environments are defined for display style math:
$$...$$
(can be turned off, even per page),\[...\]
,\begin{...}...\end{...}
and:<math>...</math>
.
MathJax produces nice and scalable mathematics, see their website (http://www.mathjax.org/) for a demonstration. This extension also enables the usage of \label{}
and \eqref{}
tags with automatic formula numbering. If needed you can still hand label by using \tag{}
.
Example
Latex Code
<syntaxhighlight lang="latex"> \(
\newcommand{\Re}{\mathrm{Re}\,} \newcommand{\pFq}[5]{{}_{#1}\mathrm{F}_{#2} \left( \genfrac{}{}{0pt}{}{#3}{#4} \bigg| {#5} \right)}
\)
We consider, for various values of \(s\), the \(n\)-dimensional integral \begin{align}
\label{def:Wns} W_n (s) &:= \int_{[0, 1]^n} \left| \sum_{k = 1}^n \mathrm{e}^{2 \pi \mathrm{i} \, x_k} \right|^s \mathrm{d}\boldsymbol{x}
\end{align} which occurs in the theory of uniform random walk integrals in the plane, where at each step a unit-step is taken in a random direction. As such, the integral \eqref{def:Wns} expresses the \(s\)-th moment of the distance to the origin after \(n\) steps.
By experimentation and some sketchy arguments we quickly conjectured and strongly believed that, for \(k\) a nonnegative integer \begin{align}
\label{eq:W3k} W_3(k) &= \Re \, \pFq32{\frac12, -\frac k2, -\frac k2}{1, 1}{4}.
\end{align} Appropriately defined, \eqref{eq:W3k} also holds for negative odd integers. The reason for \eqref{eq:W3k} was long a mystery, but it will be explained at the end of the paper. </syntaxhighlight>
(Which comes from a preprint of Jon M. Borwein, et. al. Some arithmetic properties of short random walk integrals.)
Rendered text
\(
\newcommand{\Re}{\mathrm{Re}\,} \newcommand{\pFq}[5]{{}_{#1}\mathrm{F}_{#2} \left( \genfrac{}{}{0pt}{}{#3}{#4} \bigg| {#5} \right)}
\)
We consider, for various values of \(s\), the \(n\)-dimensional integral \begin{align}
\label{def:Wns} W_n (s) &:= \int_{[0, 1]^n} \left| \sum_{k = 1}^n \mathrm{e}^{2 \pi \mathrm{i} \, x_k} \right|^s \mathrm{d}\boldsymbol{x}
\end{align} which occurs in the theory of uniform random walk integrals in the plane, where at each step a unit-step is taken in a random direction. As such, the integral \eqref{def:Wns} expresses the \(s\)-th moment of the distance to the origin after \(n\) steps.
By experimentation and some sketchy arguments we quickly conjectured and strongly believed that, for \(k\) a nonnegative integer \begin{align}
\label{eq:W3k} W_3(k) &= \Re \, \pFq32{\frac12, -\frac k2, -\frac k2}{1, 1}{4}.
\end{align} Appropriately defined, \eqref{eq:W3k} also holds for negative odd integers. The reason for \eqref{eq:W3k} was long a mystery, but it will be explained at the end of the paper.
Additional Information
- This documentation comes from the MathJax Extension page. Additional documentation on using MathJax can be found at www.mathjax.org.
- Our MathJax config file defines some potentially helpful macros:
<syntaxhighlight lang="javascript">
//<![CDATA[
MathJax.Hub.Config({
tex2jax: {
inlineMath: [ ["\\(","\\)"] ],
displayMath: [ ['$$','$$'], ["\\[","\\]"] ],
processEscapes: false,
element: "content",
ignoreClass: "(tex2jax_ignore|mw-search-results|searchresults)" /* note: this is part of a regex, check the docs! */
},
TeX: {
Macros: {
/* Wikipedia compatibility: these macros are used on Wikipedia */
empty: '\\emptyset',
P: '\\unicode{xb6}',
Alpha: '\\unicode{x391}', /* FIXME: These capital Greeks don't show up in bold in \boldsymbol ... */
Beta: '\\unicode{x392}',
Epsilon: '\\unicode{x395}',
Zeta: '\\unicode{x396}',
Eta: '\\unicode{x397}',
Iota: '\\unicode{x399}',
Kappa: '\\unicode{x39a}',
Mu: '\\unicode{x39c}',
Nu: '\\unicode{x39d}',
Pi: '\\unicode{x3a0}',
Rho: '\\unicode{x3a1}',
Sigma: '\\unicode{x3a3}',
Tau: '\\unicode{x3a4}',
Chi: '\\unicode{x3a7}',
C: '\\mathbb{C}', /* the complex numbers */
N: '\\mathbb{N}', /* the natural numbers */
Q: '\\mathbb{Q}', /* the rational numbers */
R: '\\mathbb{R}', /* the real numbers */
Z: '\\mathbb{Z}', /* the integer numbers */
RR: '\\mathbb{R}',
ZZ: '\\mathbb{Z}',
NN: '\\mathbb{N}',
QQ: '\\mathbb{Q}',
CC: '\\mathbb{C}',
FF: '\\mathbb{F}'
}
}
});
//]]> </syntaxhighlight>