Difference between revisions of "HowToEnterMathSymbols"

From WeBWorK_wiki
Jump to navigation Jump to search
(Redirected page to Help:Entering mathematics)
 
(12 intermediate revisions by 2 users not shown)
Line 1: Line 1:
We use the [http://www.mediawiki.org/wiki/Extension:MathJax MathJax Extension] by [http://www.mediawiki.org/wiki/User:Dirk_Nuyens Dirk Nuyens]. This extension enables [http://www.mathjax.org/ MathJax] (http://www.mathjax.org/) which is a Javascript library written by Davide Cervone.
 
  +
#REDIRECT[[Help:Entering mathematics]]
 
== Usage ==
 
 
The following math environments are defined for inline style math:
 
* <code><nowiki>$...$</nowiki></code> (can be turned off, even per page),
 
* <code>\(...\)</code> and
 
* <code>&lt;math&gt;...&lt;/math&gt;</code>.
 
And the following math environments are defined for display style math:
 
* <code><nowiki>$$...$$</nowiki></code> (can be turned off, even per page),
 
* <code>\[...\]</code>,
 
* <code>\begin{...}...\end{...}</code> and
 
* <code>:&lt;math&gt;...&lt;/math&gt;</code>.
 
MathJax produces nice and scalable mathematics, see their website (http://www.mathjax.org/) for a demonstration. This extension also enables the usage of <code>\label{}</code> and <code>\eqref{}</code> tags with automatic formula numbering. If needed you can still hand label by using <code>\tag{}</code>.
 
 
This extension allows for typical LaTeX math integration.
 
For example:
 
<syntaxhighlight lang="latex">
 
<!-- some LaTeX macros we want to use: -->
 
$
 
\newcommand{\Re}{\mathrm{Re}\,}
 
\newcommand{\pFq}[5]{{}_{#1}\mathrm{F}_{#2} \left( \genfrac{}{}{0pt}{}{#3}{#4} \bigg| {#5} \right)}
 
$
 
 
We consider, for various values of $s$, the $n$-dimensional integral
 
\begin{align}
 
\label{def:Wns}
 
W_n (s)
 
&:=
 
\int_{[0, 1]^n}
 
\left| \sum_{k = 1}^n \mathrm{e}^{2 \pi \mathrm{i} \, x_k} \right|^s \mathrm{d}\boldsymbol{x}
 
\end{align}
 
which occurs in the theory of uniform random walk integrals in the plane,
 
where at each step a unit-step is taken in a random direction. As such,
 
the integral \eqref{def:Wns} expresses the $s$-th moment of the distance
 
to the origin after $n$ steps.
 
 
By experimentation and some sketchy arguments we quickly conjectured and
 
strongly believed that, for $k$ a nonnegative integer
 
\begin{align}
 
\label{eq:W3k}
 
W_3(k) &= \Re \, \pFq32{\frac12, -\frac k2, -\frac k2}{1, 1}{4}.
 
\end{align}
 
Appropriately defined, \eqref{eq:W3k} also holds for negative odd integers.
 
The reason for \eqref{eq:W3k} was long a mystery, but it will be explained
 
at the end of the paper.
 
</syntaxhighlight>
 
(Which comes from a preprint of ''Jon M. Borwein, et. al. Some arithmetic properties of short random walk integrals.'')
 
 
This renders as http://www.cs.kuleuven.be/~dirkn/Extension_MathJax/MathJaxExample.png.
 
 
<!-- some LaTeX macros we want to use: -->
 
$$
 
\newcommand{\Re}{\mathrm{Re}\,}
 
\newcommand{\pFq}[5]{{}_{#1}\mathrm{F}_{#2} \left( \genfrac{}{}{0pt}{}{#3}{#4} \bigg| {#5} \right)}
 
$$
 
 
We consider, for various values of $s$, the $n$-dimensional integral
 
\begin{align}
 
\label{def:Wns}
 
W_n (s)
 
&:=
 
\int_{[0, 1]^n}
 
\left| \sum_{k = 1}^n \mathrm{e}^{2 \pi \mathrm{i} \, x_k} \right|^s \mathrm{d}\boldsymbol{x}
 
\end{align}
 
which occurs in the theory of uniform random walk integrals in the plane,
 
where at each step a unit-step is taken in a random direction. As such,
 
the integral \eqref{def:Wns} expresses the $s$-th moment of the distance
 
to the origin after $n$ steps.
 
 
By experimentation and some sketchy arguments we quickly conjectured and
 
strongly believed that, for $k$ a nonnegative integer
 
\begin{align}
 
\label{eq:W3k}
 
W_3(k) &= \Re \, \pFq32{\frac12, -\frac k2, -\frac k2}{1, 1}{4}.
 
\end{align}
 
Appropriately defined, \eqref{eq:W3k} also holds for negative odd integers.
 
The reason for \eqref{eq:W3k} was long a mystery, but it will be explained
 
at the end of the paper.
 
 
This documentation comes from the [http://www.mediawiki.org/wiki/Extension:MathJax MathJax Extension page]. Additional documentation on using MathJax can be found at www.mathjax.org.
 

Latest revision as of 14:34, 24 July 2012