I've
written the following problem using the select_list construction, and I
would like to force students to respond with the exact values of the
answers. Is there a way I can get John Jones exact_no_trig filter to
work here? Or is there some other way to accomplish this?
Ben Pollina DOCUMENT(); # This should be the first executable line in the problem.
loadMacros( PG.pl, PGbasicmacros.pl, PGchoicemacros.pl, PGanswermacros.pl, PGauxiliaryFunctions.pl, PGasu.pl );
TEXT(&beginproblem); $showPartialCorrectAnswers = 1;
$sl = new_select_list(); $sl->qa( " \( \sin (0) \) ", 0, " \( \cos (0) \) ", 1, " \( \sin (\pi) \) ", 0, " \( \cos (\pi) \) ", -1, " \( \sin (-\pi) \) ", 0, " \( \cos (-\pi) \) ", -1, " \( \cos (\frac{\pi}{6}) \) ", sqrt(3)/2, " \( \cos (\frac{5 \pi}{6}) \) ", -sqrt(3)/2, " \( \sin (\frac{\pi}{2}) \) ", 1, " \( \sin (\frac{3 \pi}{2}) \) ", -1, " \( \sin (\frac{7 \pi}{6}) \) ", -1/2, " \( \cos (\frac{7 \pi}{6}) \) ", -sqrt(3)/2, " \( \cos (\frac{\pi}{2} ) \) ", 0, " \( \cos (\frac{5 \pi}{2}) \) ", 0, " \( \sin (\frac{5 \pi}{6} )\) ", 1/2, " \( \sec (\frac{5 \pi}{6} ) \) ", -2/sqrt(3), " \( \cos (\frac{7 \pi}{3} ) \) ", 1/2, " \( \sec (\frac{7 \pi}{3} )\) ", 2, " \( \sin (\frac{3 \pi}{4} )\) ", sqrt(2)/2, " \( \cos (\frac{3 \pi}{4}) \) ", -sqrt(2)/2, " \( \cos (\frac{\pi}{3} )\) ", 1/2, " \( \cos (-\frac{\pi}{3}) \) ", 1/2, " \( \sin (\frac{\pi}{6}) \) ", 1/2, " \( \sin (-\frac{\pi}{6}) \) ", -1/2, " \( \tan (\frac{\pi}{6} ) \) ", sqrt(3)/3, " \( \tan (- \frac{\pi}{6}) \) ", -sqrt(3)/3, " \( \tan (\frac{\pi}{3} )\) ", sqrt(3), " \( \cot (\frac{\pi}{3} ) \) ", sqrt(3)/3, " \( \sec (\frac{11 \pi}{3} )\) ", 2, " \( \csc (\frac{11 \pi}{3}) \) ", -2/sqrt(3), " \( \sec (\frac{13 \pi}{6} )\) ", 2/sqrt(3), " \( \sec (- \frac{13 \pi}{6} )\) ", 2/sqrt(3), " \( \sin (\frac{9 \pi}{4} )\) ", sqrt(2)/2, " \( \csc (\frac{9 \pi}{4}) \) ", sqrt(2), " \( \sec (\pi) \) ", -1, " \( \csc (\frac{\pi}{2}) \) ", 1, " \( \tan (- \frac{\pi}{4} ) \) ", -1, " \( \cot (- \frac{\pi}{4} ) \) ", -1, " \( \tan ( \frac{3 \pi}{4} )\)", -1, " \( \tan (\frac{11 \pi}{4} )\) ", -1, );
$sl->choose(10); $sl->ans_rule_len(15);
BEGIN_TEXT
Find the exact value of the following. { $sl->print_q }
END_TEXT
ANS(num_cmp( $sl->ra_correct_ans)) ;
ENDDOCUMENT(); # This should be the last executable line in the problem.
<| Post or View Comments |>
|