##DESCRIPTION
## Game Theory, basic Nash Equilibria
##ENDDESCRIPTION
##KEYWORDS('Game Theory, Nash Equilibria')
## DBsubject('Game Theory')
## DBchapter('Simultaneous Move Games')
## DBsection('Nash Equilibria')
## Date('6/25/2014')
## Author('Adam Graham-Squire')
## Institution('High Point University')
## TitleText1('Games Of Strategy')
## EditionText1('2')
## AuthorText1('Dixit, Skeath')
## Chapter('4')
## Problem1('2a')
########################################################################
DOCUMENT(); # This should be the first executable line in the problem.
loadMacros(
"PGstandard.pl",
"PGunion.pl",
"MathObjects.pl",
"PGcourse.pl",
"PGML.pl",
"PGessaymacros.pl"
);
TEXT(beginproblem);
##############################
#
# Setup
#
Context("Numeric");
$a = non_zero_random(1,2,1);
$b = non_zero_random(3,4,1);
$c = non_zero_random(5,6,1);
$d = non_zero_random(7,10,1);
##############################
#
# Main text
#
BEGIN_TEXT
Find all Nash equilibria in pure strategies for the zero-sum game given below.
$PAR
$BCENTER
\{ begintable(3) \}
\{ row( "", "Left", "Right" ) \}
\{ row( "Up", "$a, -$a", "$d, -$d" ) \}
\{ row( "Down", "$b, -$b", "$c, -$c" ) \}
\{ endtable() \}
$ECENTER
END_TEXT
BEGIN_PGML
If both players play their optimal strategy, the Row player will have a payout of [________]{"[$b]"}.
Explain your reasoning for your answer above.
[@ ANS(essay_cmp()); ans_box(5,40) @]*
END_PGML
##############################
ENDDOCUMENT();