In my code I'm trying to display the decimal .00001 but it keeps getting displayed as 1e -05 in the preview screen. Do you know how to fix this?

DOCUMENT();

loadMacros(

"PGstandard.pl",

"MathObjects.pl",

"contextFraction.pl",

"parserFormulaUpToConstant.pl",

"PGcourse.pl"

);

TEXT(beginproblem());

do

{

$a = random(2, 9);

$b = random(2, 9);

}

until (

($b < $a)

);

Context("Numeric")->flags->set(

reduceConstants => 0);

#$c = list_random(.001, .0001, .00001, .01);

$c = .00001;

Context()->texStrings;

BEGIN_TEXT

If we want to approximate \( \displaystyle f(x) = \ln($a - $b x)\) with a \( \displaystyle n\)-th degree Taylor polynomial, then what is the smallest \(\displaystyle n \) that will give us an error less than \( \displaystyle $c\)

END_TEXT

Context()->normalStrings;

ENDDOCUMENT();

loadMacros(

"PGstandard.pl",

"MathObjects.pl",

"contextFraction.pl",

"parserFormulaUpToConstant.pl",

"PGcourse.pl"

);

TEXT(beginproblem());

do

{

$a = random(2, 9);

$b = random(2, 9);

}

until (

($b < $a)

);

Context("Numeric")->flags->set(

reduceConstants => 0);

#$c = list_random(.001, .0001, .00001, .01);

$c = .00001;

Context()->texStrings;

BEGIN_TEXT

If we want to approximate \( \displaystyle f(x) = \ln($a - $b x)\) with a \( \displaystyle n\)-th degree Taylor polynomial, then what is the smallest \(\displaystyle n \) that will give us an error less than \( \displaystyle $c\)

END_TEXT

Context()->normalStrings;

ENDDOCUMENT();