I am trying to use the variable t instead of x in the matrix $M below and can't seem to figure out how to do so and I am not sure why 'x' works. Any help would be great.
## DBchapter(Operation calculus)
## Level(3)DOCUMENT();
loadMacros(
"PGstandard.pl",
"PGML.pl",
"MathObjects.pl",
"MatrixUnits.pl",
"VectorListCheckers.pl",
"PGchoicemacros.pl",
"contextFraction.pl",
"parserRadioButtons.pl",
#"PGchoicemacros.pl",
"unionLists.pl",
"PGcourse.pl",
);
Context("Matrix");
$S = Matrix([[Compute(random(4,6)),0,0],
[0,Compute(non_zero_random(2,6)),0],
[0,0,Compute(non_zero_random(-10,2))]]);
$s11=$S->element(1,1);
$s22=$S->element(2,2);
$s33=$S->element(3,3);
$M = Matrix(["e^(x*$s11)",0,0],
[0,"e^(x*$s22)",0],
[0,0,"e^(x*$s33)"]);
BEGIN_PGML
Recall that
[`` e^{t} = 1 + t + \frac{t^2}{2!} + \frac{t^3}{3!}+\cdots ``]
With this it seems reasonable to define
[`` e^{Ax} = I + xA + \frac{(xA)^2}{2!} + \frac{(xA)^3}{3!}+\cdots ``]
where [` x `] is a scalar.
Suppose that [` A `] is diagonlizable with eigenvalues [` \lambda_1=[$s11], \lambda_2=[$s22], \lambda_3=[$s33]`] so that
[` A `] is given by
[``A = W [$S] W^{-1}``]
where the columns of [` W `] are the eigenvectors of [` A `]: [` v_1, v_2, v_3 `].
Check to see that
[` (x A)^n = W \left[ \begin{array}{ccc}
([$s11] x)^n & 0 & 0 \\
0 & ([$s22] x)^n &0 \\
0 & 0 & ([$s33] x)^n
\end{array}
\right] W^{-1} `]
Given that, what is:
[``e^{xA} = W``][____]*{$M}[``W^{-1}?``]
END_PGML
ENDDOCUMENT();