In my code I'm trying to display the decimal .00001 but it keeps getting displayed as 1e -05 in the preview screen. Do you know how to fix this?
DOCUMENT();
loadMacros(
"PGstandard.pl",
"MathObjects.pl",
"contextFraction.pl",
"parserFormulaUpToConstant.pl",
"PGcourse.pl"
);
TEXT(beginproblem());
do
{
$a = random(2, 9);
$b = random(2, 9);
}
until (
($b < $a)
);
Context("Numeric")->flags->set(
reduceConstants => 0);
#$c = list_random(.001, .0001, .00001, .01);
$c = .00001;
Context()->texStrings;
BEGIN_TEXT
If we want to approximate \( \displaystyle f(x) = \ln($a - $b x)\) with a \( \displaystyle n\)-th degree Taylor polynomial, then what is the smallest \(\displaystyle n \) that will give us an error less than \( \displaystyle $c\)
END_TEXT
Context()->normalStrings;
ENDDOCUMENT();
loadMacros(
"PGstandard.pl",
"MathObjects.pl",
"contextFraction.pl",
"parserFormulaUpToConstant.pl",
"PGcourse.pl"
);
TEXT(beginproblem());
do
{
$a = random(2, 9);
$b = random(2, 9);
}
until (
($b < $a)
);
Context("Numeric")->flags->set(
reduceConstants => 0);
#$c = list_random(.001, .0001, .00001, .01);
$c = .00001;
Context()->texStrings;
BEGIN_TEXT
If we want to approximate \( \displaystyle f(x) = \ln($a - $b x)\) with a \( \displaystyle n\)-th degree Taylor polynomial, then what is the smallest \(\displaystyle n \) that will give us an error less than \( \displaystyle $c\)
END_TEXT
Context()->normalStrings;
ENDDOCUMENT();