Forum archive 2000-2006

Michael Gage - Java applet example

Michael Gage - Java applet example

by Arnold Pizer -
Number of replies: 0
inactiveTopicJava applet example topic started 9/22/2001; 7:37:51 PM
last post 9/22/2001; 7:37:51 PM
userMichael Gage - Java applet example  blueArrow
9/22/2001; 7:37:51 PM (reads: 12472, responses: 0)

The Java applet example

To obtain this problem

(1 pt) rochesterLibrary/setMAAtutorial/javaappletexample.pg

Java applet example

This problem illustrates how you can embed Java applet code in a WeBWorK example to create an interactive homework problem that could never be provided by a text book.

WeBWorK can use existing javaScript and Java code to augment its capabilities.


mathbean applet from David Ecks

The graph above represents the function

f(x) = x^2 + a x +b
where a and b are parameters.

For each value of a find the value of b which makes the graph just touch the x-axis.
if a= 2 then
if a= -0.5 then
if a= -2.5 then

Does this relationship between a and b specify b as a function of a? (Yes or No)
Does this relationship between a and b specify a as a function of b? (Yes or No)
Write a formula for calculating this value of b from a.
b =

 

 


WARNINGS
µ¦å{h­
Enter this code
DOCUMENT();

loadMacros("PG.pl",
"PGbasicmacros.pl",
"PGchoicemacros.pl",
"PGanswermacros.pl",
);

TEXT(beginproblem(), $BR,$BBOLD, "Java applet example", $EBOLD, $BR,$BR);
# define function to be evaluated
$a= random(1,3,1);
$b= random(-4,4,.1);
$c = random(-4,4,1);
$x0=random(-2,2,1);
$function = FEQ(" ${a}x^2+${b}x +$c "); # This function will be redefined for javaScript as well.
sub fp { # define a subroutine to calculate the derivative
my $x = shift;
2*$a*$x+$b;
}
$ans = fp($x0);

BEGIN_TEXT
$PAR
This problem illustrates how you can embed Java applet code in a WeBWorK example
to create an interactive homework problem that could never be provided by a text book.
$PAR
WeBWorK can use existing $BBOLD javaScript$EBOLD and $BBOLD Java $EBOLD
code to augment its capabilities.
$HR

END_TEXT
$javaApplet = <<EOF;
<applet code="mathbeans.SliderGraphApplet.class"
archive="/courses/system_html/applets/mathbeans.jar"
codebase="../classes/" width=400 height=380>
<PARAM NAME="variable1" VALUE="a">
<PARAM NAME="variable2" VALUE="b">
<param name="function" value="x^2 +a*x +b">
<param name="limits" value="-2 2 -9 9">

</applet>

<H6><A HREF="http://math.hws.edu/mathbeans/applets/index.html">
mathbean applet from David Ecks</A>
</H6>
EOF
# only print out the java applet code when viewing on the screen
TEXT(MODES(
TeX => " \fbox{ The java applet was displayed here
}",
HTML => $javaApplet,
));

$a1= random(-3,3,.5);
$a2= random(-3,3,.5);
$a3= random(-3,3,.5);
$b1 = ($a1/2)**2; # remember to use ** for exponentiation when
# calculating in pure Perl!
$b2= ($a2 / 2)**2;
$b3 = ($a3 / 2)**2;

ANS(num_cmp( $b1, reltol => 10, format=>'%0.2g'));
ANS(num_cmp( $b2, reltol => 10, format=>'%0.2g'));
ANS(num_cmp( $b3, reltol => 10, format=>'%0.2g'));

BEGIN_TEXT

$PAR
The graph above represents the function
\[f(x) = x^2 + a x +b \]
where \( a \) and \( b \) are parameters. $PAR

For each value of \( a \) find the value of \( b \) which
makes the graph just touch the x-axis.
$BR
if a= $a1 then \{ ans_rule(10) \}$BR
if a= $a2 then \{ ans_rule(10) \}$BR
if a= $a3 then \{ ans_rule(10) \} $PAR

Does this relationship between a and b specify b as a function of a?
\{ ans_rule(4) \} (Yes or No)$BR

Does this relationship between a and b specify a as a function of b?
\{ ans_rule(4) \} (Yes or No)$BR

Write a formula for calculating this value of \( b \) from \( a \).$BR
b = \{ ans_rule(40) \}

END_TEXT
ANS(str_cmp('Yes') );
ANS(str_cmp('No') );
ANS(fun_cmp('(a/2)^2', vars=>'a'));


ENDDOCUMENT();




DOCUMENT();



loadMacros(PG.pl,
PGbasicmacros.pl,
PGchoicemacros.pl,
PGanswermacros.pl
);
TEXT(beginproblem());
$javaApplet = <<EOF;
< applet code="mathbeans.SliderGraphApplet.class"
archive="/applets/mathbeans.jar" codebase="../classes/" width=480
height=380>
< PARAM NAME="variable1" VALUE="a">
< PARAM NAME="variable2" VALUE="b">
< param name="function" value="x^2 +a*x +b">
< param name="limits" value="-2 2 -9 9">
</applet>
< H6><A HREF="http://math.hws.edu/mathbeans/applets/index.html">mathbean
applet from David Ecks </A> </H6>
EOF



TEXT(MODES(
TeX => " \fbox{ The java applet was displayed here}",
Latex2HTML => "\begin{rawhtml} $javaApplet \end{rawhtml}",
HTML_tth => $javaApplet,
HTML => $javaApplet,
));



$a1= random(-3,3,.5);
$a2= random(-3,3,.5);
$a3= random(-3,3,.5);
$b1 =($a1/2)**2;
ANS( num_cmp( $b1, reltol => 10, format=>'%0.2g'));
ANS( num_cmp( $b2,reltol => 10, format=>'%0.2g'));
ANS( num_cmp( $b3, reltol => 10,format=>'%0.2g'));
BEGIN_TEXT
$PAR The graph above represents the function \[f(x) = x^2 + a x +b \]
where \( a \) and \( b \) are parameters. $PAR



For each value of \( a \) find the value of \( b \) which makes the
graph just touch the x-axis. $BR
if a= $a1 then \{ ans_rule(10) \}$BR
if a= $a2 then \{ ans_rule(10) \}$BR
if a= $a3 then \{ ans_rule(10) \}
$PAR
Does this relationship between a and b specify b as a function of a? \{
ans_rule(4) \} (Yes or No)$BR
Does this relationship between a and b specify a as a function of b? \{
ans_rule(4) \} (Yes or No)$BR
Write a formula for calculating this value of \( b \) from \( a \).$BR b
= \{ ans_rule(40) \}
END_TEXT
ANS(str_cmp('Yes') ); ANS(str_cmp('No') );
ANS(function_cmp( '(a/2)^2', 'a') );
ENDDOCUMENT();


Comments:

This problem is just a demo -- it doesn't actually work if you push the submit answer button. (You can test a {linkWebworkProblem("tutorialCourse", "setFirstSteps","10","live")} version of this problem.)

 

 

 

<| Post or View Comments |>