The Java applet example To obtain this problem
(1 pt) rochesterLibrary/setMAAtutorial/javaappletexample.pg
Java applet example
This problem illustrates how you can embed Java applet code in a WeBWorK example
to create an interactive homework problem that could never be provided by a text book.
WeBWorK can use existing javaScript and Java
code to augment its capabilities.
The graph above represents the function
where and are parameters.
For each value of find the value of which
makes the graph just touch the x-axis.
if a= 2 then
if a= -0.5 then
if a= -2.5 then
Does this relationship between a and b specify b as a function of a?
(Yes or No)
Does this relationship between a and b specify a as a function of b?
(Yes or No)
Write a formula for calculating this value of from .
b = |
WARNINGS µ¦å{h
Enter this code
DOCUMENT();
loadMacros("PG.pl", "PGbasicmacros.pl", "PGchoicemacros.pl", "PGanswermacros.pl", );
TEXT(beginproblem(), $BR,$BBOLD, "Java applet example", $EBOLD, $BR,$BR); # define function to be evaluated $a= random(1,3,1); $b= random(-4,4,.1); $c = random(-4,4,1); $x0=random(-2,2,1); $function = FEQ(" ${a}x^2+${b}x +$c "); # This function will be redefined for javaScript as well. sub fp { # define a subroutine to calculate the derivative my $x = shift; 2*$a*$x+$b; } $ans = fp($x0);
BEGIN_TEXT $PAR This problem illustrates how you can embed Java applet code in a WeBWorK example to create an interactive homework problem that could never be provided by a text book. $PAR WeBWorK can use existing $BBOLD javaScript$EBOLD and $BBOLD Java $EBOLD code to augment its capabilities. $HR
END_TEXT $javaApplet = <<EOF; <applet code="mathbeans.SliderGraphApplet.class" archive="/courses/system_html/applets/mathbeans.jar" codebase="../classes/" width=400 height=380> <PARAM NAME="variable1" VALUE="a"> <PARAM NAME="variable2" VALUE="b"> <param name="function" value="x^2 +a*x +b"> <param name="limits" value="-2 2 -9 9">
</applet>
<H6><A HREF="http://math.hws.edu/mathbeans/applets/index.html"> mathbean applet from David Ecks</A> </H6> EOF # only print out the java applet code when viewing on the screen TEXT(MODES( TeX => " \fbox{ The java applet was displayed here }", HTML => $javaApplet, ));
$a1= random(-3,3,.5); $a2= random(-3,3,.5); $a3= random(-3,3,.5); $b1 = ($a1/2)**2; # remember to use ** for exponentiation when # calculating in pure Perl! $b2= ($a2 / 2)**2; $b3 = ($a3 / 2)**2;
ANS(num_cmp( $b1, reltol => 10, format=>'%0.2g')); ANS(num_cmp( $b2, reltol => 10, format=>'%0.2g')); ANS(num_cmp( $b3, reltol => 10, format=>'%0.2g'));
BEGIN_TEXT
$PAR The graph above represents the function \[f(x) = x^2 + a x +b \] where \( a \) and \( b \) are parameters. $PAR
For each value of \( a \) find the value of \( b \) which makes the graph just touch the x-axis. $BR if a= $a1 then \{ ans_rule(10) \}$BR if a= $a2 then \{ ans_rule(10) \}$BR if a= $a3 then \{ ans_rule(10) \} $PAR
Does this relationship between a and b specify b as a function of a? \{ ans_rule(4) \} (Yes or No)$BR
Does this relationship between a and b specify a as a function of b? \{ ans_rule(4) \} (Yes or No)$BR
Write a formula for calculating this value of \( b \) from \( a \).$BR b = \{ ans_rule(40) \}
END_TEXT ANS(str_cmp('Yes') ); ANS(str_cmp('No') ); ANS(fun_cmp('(a/2)^2', vars=>'a'));
ENDDOCUMENT();
DOCUMENT();
loadMacros(PG.pl, PGbasicmacros.pl, PGchoicemacros.pl, PGanswermacros.pl ); TEXT(beginproblem()); $javaApplet = <<EOF; < applet code="mathbeans.SliderGraphApplet.class" archive="/applets/mathbeans.jar" codebase="../classes/" width=480 height=380> < PARAM NAME="variable1" VALUE="a"> < PARAM NAME="variable2" VALUE="b"> < param name="function" value="x^2 +a*x +b"> < param name="limits" value="-2 2 -9 9"> </applet> < H6><A HREF="http://math.hws.edu/mathbeans/applets/index.html">mathbean applet from David Ecks </A> </H6> EOF
TEXT(MODES( TeX => " \fbox{ The java applet was displayed here}", Latex2HTML => "\begin{rawhtml} $javaApplet \end{rawhtml}", HTML_tth => $javaApplet, HTML => $javaApplet, ));
$a1= random(-3,3,.5); $a2= random(-3,3,.5); $a3= random(-3,3,.5); $b1 =($a1/2)**2; ANS( num_cmp( $b1, reltol => 10, format=>'%0.2g')); ANS( num_cmp( $b2,reltol => 10, format=>'%0.2g')); ANS( num_cmp( $b3, reltol => 10,format=>'%0.2g')); BEGIN_TEXT $PAR The graph above represents the function \[f(x) = x^2 + a x +b \] where \( a \) and \( b \) are parameters. $PAR
For each value of \( a \) find the value of \( b \) which makes the graph just touch the x-axis. $BR if a= $a1 then \{ ans_rule(10) \}$BR if a= $a2 then \{ ans_rule(10) \}$BR if a= $a3 then \{ ans_rule(10) \} $PAR Does this relationship between a and b specify b as a function of a? \{ ans_rule(4) \} (Yes or No)$BR Does this relationship between a and b specify a as a function of b? \{ ans_rule(4) \} (Yes or No)$BR Write a formula for calculating this value of \( b \) from \( a \).$BR b = \{ ans_rule(40) \} END_TEXT ANS(str_cmp('Yes') ); ANS(str_cmp('No') ); ANS(function_cmp( '(a/2)^2', 'a') ); ENDDOCUMENT();
Comments: This problem is just a demo -- it doesn't
actually work if you push the submit answer button. (You can test a
{linkWebworkProblem("tutorialCourse", "setFirstSteps","10","live")}
version of this problem.)
<| Post or View Comments |>
|