DynamicImages3
This problem has been replaced with a newer version of this problem
Dynamic Graphic Images, with Filled Regions
This code snippet shows the essential PG code to check student answers that are equations. Note that these are insertions, not a complete PG file. This code will have to be incorporated into the problem file on which you are working.
PG problem file | Explanation |
---|---|
DOCUMENT(); loadMacros( "PGstandard.pl", "PGgraphmacros.pl", # "PGnumericalmacros.pl", # might be useful ); TEXT(beginproblem()); |
Initialization:
We need to include the macro file |
foreach my $i (0..2) { $gr[$i] = init_graph(-5,-5,5,5,grid=>[10,10],axes=>[0,0],pixels=>[400,400]); $gr[$i]->lb('reset'); foreach my $j (1..4) { $gr[$i]->lb( new Label(-4.7, $j, $j,'black','center','middle')); $gr[$i]->lb( new Label(-4.7, -$j,-$j,'black','center','middle')); $gr[$i]->lb( new Label( $j,-4.7, $j,'black','center','middle')); $gr[$i]->lb( new Label( -$j,-4.7,-$j,'black','center','middle')); } $gr[$i]->lb( new Label(4.7,0.2,'x','black','center','middle')); $gr[$i]->lb( new Label(0.2,4.7,'y','black','center','middle')); $gr[$i]->new_color("lightblue", 214,230,244); # RGB $gr[$i]->new_color("darkblue", 100,100,255); $gr[$i]->new_color("lightgreen",156,215,151); $gr[$i]->new_color("darkgreen", 0, 86, 34); $gr[$i]->new_color("lightred", 245,234,229); # light red-purple $gr[$i]->new_color("darkred", 159, 64, 16); # red-brown $gr[$i]->new_color("nicegreen", 0,110, 0); } # # Filled triangle with dark border # # Note: we could fill in any polygon by adding more sides # $xmin = random(-3,-1,1); $xmax = random(1,3,1); $ymin = random(-3,-1,1); $ymax = random(1,3,1); $gr[0]->moveTo($xmin,$ymin); $gr[0]->lineTo($xmax,$ymin,"darkgreen",2); # bottom edge $gr[0]->lineTo($xmin,$ymax,"darkgreen",2); # hypotenuse $gr[0]->lineTo($xmin,$ymin,"darkgreen",2); # left edge $gr[0]->fillRegion([$xmin+0.1,$ymin+0.1,"lightgreen"]); # # Integral as area under the curve example # add_functions($gr[1], "sqrt(x)+1 for x in <0,5> using color:darkblue and weight:2"); $gr[1]->moveTo(1,2); $gr[1]->lineTo(1,0,"darkblue",2); $gr[1]->lineTo(4,0,"darkblue",2); $gr[1]->lineTo(4,3,"darkblue",2); $gr[1]->fillRegion([1.1,0.1,"lightblue"]); # # A filled in circle # add_functions($gr[2], " sqrt(4-x^2) for x in <-2,2> using color:darkred and weight:2", "-sqrt(4-x^2) for x in <-2,2> using color:darkred and weight:2" ); $gr[2]->fillRegion([0.1,0.1,"lightred"]); |
Setup:
To use the
The examples to the left use the features provided by
# filled rectangle with dark border # uses some macros directly from GD.pm # $gr2 = init_graph(-4,-4,4,4,grid=>[8,8],axes=>[0,0],pixels=>[300,300]); $lightblue = $gr2->im->colorAllocate(148,201,255); $darkblue = $gr2->im->colorAllocate(100,100,255); # # translate from graph coordinates to pixel coordinates # $xminpixel = $gr2->ii($xmin); $xmaxpixel = $gr2->ii($xmax); $yminpixel = $gr2->jj($ymin); $ymaxpixel = $gr2->jj($ymax); # # use filledRectangle and rectangle from GD.pm, accessed via ->im-> # $gr2->im->filledRectangle($xminpixel,$yminpixel,$xmaxpixel,$ymaxpixel,$lightblue); $gr2->im->rectangle($xminpixel,$yminpixel,$xmaxpixel,$ymaxpixel,$darkblue); ################ # Graph # # filled circle with dark border # uses some macros directly from GD.pm # $r = random(1,4,1); # radius $gr3 = init_graph(-5,-5,5,5,grid=>[10,10],axes=>[0,0],pixels=>[400,400]); $gr3->lb('reset'); foreach my $i (1..4) { $gr3->lb( new Label(-4.7,$i,$i,'black','center','middle')); $gr3->lb( new Label(-4.7,-$i,-$i,'black','center','middle')); $gr3->lb( new Label($i,-4.7,$i,'black','center','middle')); $gr3->lb( new Label(-$i,-4.7,-$i,'black','center','middle')); } $gr3->lb( new Label(4.7,0.2,'x','black','center','middle')); $gr3->lb( new Label(0.2,4.7,'y','black','center','middle')); $lightblue = $gr3->im->colorAllocate(148,201,255); $darkblue = $gr3->im->colorAllocate(100,100,255); # # use arc() and fillToBorder() from GD.pm, accessed via ->im-> # $cxpixel = $gr3->ii(0); # x-coordinate of center $cypixel = $gr3->jj(0); # x-coordinate of center $dxpixel = $gr3->ii($r) - $gr3->ii(-$r); # diameter of ellipse, x-direction $dypixel = $gr3->jj($r) - $gr3->jj(-$r); # diameter of ellipse, y-direction # # 0 to 360 are degrees $gr3->im->arc($cxpixel,$cypixel,$dxpixel,$dypixel,0,360,$darkblue); $gr3->im->fillToBorder($cxpixel,$cypixel,$darkblue,$lightblue); |
BEGIN_TEXT $BCENTER \{ image( insertGraph($gr[0]), height=>400, width=>400, tex_size=>800 ) \} $PAR \{ image( insertGraph($gr[1]), height=>400, width=>400, tex_size=>800 ) \} $PAR \{ image( insertGraph($gr[2]), height=>400, width=>400, tex_size=>800 ) \} $ECENTER END_TEXT |
Main Text: The problem text section of the file is as we'd expect. |
$showPartialCorrectAnswers = 1; ENDDOCUMENT(); |
Answer Evaluation: As is the answer. |
- POD documentation: PGgraphmacros.pl
- PG macro: PGgraphmacros.pl