ScalingTranslating1
Jump to navigation
Jump to search
Scaling and Translating Functions
This PG code shows how to add a named function to the context and use it to asses whether students know their graph transformations.
 File location in OPL: FortLewis/Authoring/Templates/Precalc/ScalingTranslating1.pg
 PGML location in OPL: FortLewis/Authoring/Templates/Precalc/ScalingTranslating1_PGML.pg
PG problem file  Explanation 

Problem tagging: 

DOCUMENT(); loadMacros( "PGstandard.pl", "MathObjects.pl", "AnswerFormatHelp.pl", "parserFunction.pl", ); TEXT(beginproblem()); 
Initialization:
We must load 
Context("Numeric"); parserFunction(f => "sin(e*x)+5.5*pi"); $answer = Formula("f(x2) + 1"); 
Setup:
The 
Context()>texStrings; BEGIN_TEXT A function \( f(x) \) is shifted to the right \( 2 \) units and up \( 1 \) unit. Find a formula for this shifted function in terms of the function \( f(x) \). $BR $BR Answer = \{ ans_rule(20) \} \{ AnswerFormatHelp("formulas") \} END_TEXT Context()>normalStrings; 
Main Text: 
$showPartialCorrectAnswers = 1; ANS( $answer>cmp() ); 
Answer Evaluation: 
Context()>texStrings; BEGIN_SOLUTION ${PAR}SOLUTION:${PAR} Solution explanation goes here. END_SOLUTION Context()>normalStrings; COMMENT('MathObject version.'); ENDDOCUMENT(); 
Solution: 