I just recently got this warning message in a problem that has worked for years:
The evaluated answer is not an answer hash : ||.
I searched the Forums pages and there are six instances on the Forum, but no solutions or replies on what to do with this error.
Please help.
Below is the rather long code block from which the Warning error came:
#########################
##DESCRIPTION
## ANOVA, SNK test
##ENDDESCRIPTION
## KEYWORDS('anova', 'snk test')
## DBsubject('Statisitics')
## DBchapter('confidence intervals')
## DBsection('Real Numbers')
## Date('11/7/2016')
## Author('Tim Payer')
# DESCRIPTION ANOVA, SNK test
# Use correct notation.
# WeBWorK problem written by TimPayer <tsp1@humboldt.edu>
# ENDDESCRIPTION
## DBsubject(Probability)
## DBchapter(Random variables)
## DBsection(Expectation)
## Institution(Humboldt State University)
## Author(Tim Payer)
## KEYWORDS(probability, translate, notation)
DOCUMENT();
loadMacros(
"PGstandard.pl",
"PGunion.pl",
"PGnumericalmacros.pl",
"PGstatisticsmacros.pl",
"MathObjects.pl",
"parserPopUp.pl",
"PGML.pl",
"unionTables.pl",
"niceTables.pl",
"PGcourse.pl",
"PGchoicemacros.pl",
"answerHints.pl",
"weightedGrader.pl"
);
install_weighted_grader();
TEXT(beginproblem());
#install_problem_grader(~~&std_problem_grader);
$showPartialCorrectAnswers = 1;
Context("Numeric");
Context()->flags->set(
tolerance => 0.01,
tolType => "absolute",
);
## Note that the wide tolerance was preventing a correct bracketing of the
## p-value for $fsamh. knocking the tolerance back down redirects the issue
## toward generating a correct SSW value and direct calculation may be needed..
############ Start Problem 25.1 ##################
### Summarized Data table values:
@nn =();
$nn[0] = Compute("1");
$nn[1] = Compute("2");
$nn[2] = Compute("3");
$nn[3] = Compute("4");
### sample size per group:
@nr =();
$nr[0] = random(19,25,1);
$nr[1] = random(68,77,1);
$nr[2] = random(70,82,1);
$nr[3] = random(9,13,1); ## widen from (9, 13) which was producing a tiny sd?
#############################################
## This next block generates raw data for each group
## and then finds the summarizing values of the mean and sd.
## Start with an empty array and subtract one to account for
## arrays that start at zero to mesh with sample size:
################################################
## Site 1
@cont = ();
foreach my $i ( 0..$nr[0] - 1 ) {
$cont[$i] = random(4.6, 12.6,0.01); # diff = 8
}
$contm = stats_mean(@cont);
$conts = stats_sd(@cont);
$control = join(", ",@cont);
## Site 2
@flea = ();
foreach my $i ( 0..$nr[1] - 1 ) {
$flea[$i] = random(2.51,11.51,0.01); # diff = 9
}
$fleam = stats_mean(@flea);
$fleas = stats_sd(@flea);
$fleab = join(", ",@flea);
## Site 3
@copb = ();
foreach my $i ( 0..$nr[2] - 1 ) {
$copb[$i] = random(3.10,13.1,0.01); # diff = 10
}
$copbm = stats_mean(@copb);
$copbs = stats_sd(@copb);
$copbb = join(", ",@copb);
## Site 4
@ww = ();
foreach my $i ( 0..$nr[3] - 1 ) {
$ww[$i] = random(9.50, 19.5,0.01); # diff = 10
}
### I need to have a check in the loops above to prevent small sds
### from occurring as they will tend cause Hartley test to fail when
### other sds are large. That is,
### the F-sample will be too large relative to the F-critical.
### Then the check must be for a wide enough range to anticipate the
### comparitive sd values for the F-max test?
$wwm = stats_mean(@ww);
$wws = stats_sd(@ww);
$wwb = join(", ",@ww);
##################################
@sr =();
$sr[0] = sprintf("%0.1f",$conts);
$sr[1] = sprintf("%0.1f",$fleas);
$sr[2] = sprintf("%0.1f",$copbs);
$sr[3] = sprintf("%0.1f",$wws);
#### Finding the largest and smallest sd for F-max test:
my $index = 0;
my $maxsd = $sr[ my $index ];
for ( 0 .. 3 )
{
if ( $maxsd < $sr[$_] )
{
$index = $_;
$maxsd = $sr[$_];
}
}
$mxsd = $maxsd;
my $index = 0;
my $minsd = $sr[ my $index ];
for ( 0 .. 3 )
{
if ( $minsd > $sr[$_] )
{
$index = $_;
$minsd = $sr[$_];
}
}
$mnsd = $minsd;
###### Rounding Sample means....
@xr =();
$xr[0] = sprintf("%0.1f",$contm);
$xr[1] = sprintf("%0.1f",$fleam);
$xr[2] = sprintf("%0.1f",$copbm);
$xr[3] = sprintf("%0.1f",$wwm);
$jnn = join("$BR ",@nn);
$jn = join("$BR ",@nr);
$jx = join("$BR ",@xr,);
$js = join("$BR ",@sr);
$trial = random(3, 9, 1);
## Preliminary Checks: Step 1 ####
$popup1 = PopUp(
["Choose:", 'independent', 'dependent'], 'independent');
$popup2 = PopUp(
["Choose:", 'pass', 'fail'], 'pass');
## Preliminary Checks: Step 1b, Equal variances ####
$nprime = Compute("4/(1/$nr[0]+1/$nr[1]+1/$nr[2]+1/$nr[3])");
$npff =floor($nprime);
$npf = Compute("$npff");
$npc = Compute("$npff+1");
$popup5 = PopUp(
["Choose:", 'Reject', 'Do Not Reject'], 'Do Not Reject');
$popup6 = PopUp(
["Choose:", 'Reject', 'Do Not Reject'], 'Reject');
$popup7 = PopUp(
["??", '40%','20%','10%', '5%','2.5%', '2%', '1%', '0.1%', '0.01%'], '5%');
$popup8 = PopUp(
["Choose:", 'Reject', 'Do Not Reject'], 'Do Not Reject');
##### Older code for previous-pre-matrix attempts ####
$dfhn =Compute("4"); ## Delete when replaced
$dfhd =Compute("$npf"); ## Delete when replaced
######################
## Using a matrix to determine F-critical for Hartleys test, alpha = 0.05
## Listing the F-Critical values for Hartley's with df = (4, 20:28)
$M1 = Matrix([2.46, 2.87, 3.28, 3.84, 4.29, 5.99], [2.41, 2.79, 3.18, 3.71, 4.13, 5.71], [2.36, 2.72, 3.09, 3.59, 3.99, 5.46], [2.31, 2.66, 3.01, 3.49, 3.86, 5.24], [2.27, 2.60, 2.94, 3.39, 3.74, 5.04], [2.23, 2.55, 2.87, 3.30, 3.64, 4.86], [2.19, 2.50, 2.81, 3.22, 3.54, 4.70], [2.16, 2.46, 2.75, 3.15, 3.45, 4.55], [2.13, 2.42, 2.70, 3.08, 3.37, 4.42]);
## F-sample for Hartleys: max/min variances based on max/min diff.
$fsamh = Compute("$maxsd**2/$minsd**2");
$rw =$npf-19; ## Letting dfw reset from rows 20-28 to rows 1-9
$fcrth = $M1->element($rw, 3); ## Hartleys F-Critical for 5%
##### If-then Conditional for bracketing p-value of Hartleys test.
if($fsamh < $M1->element($rw, 1)){
$pp = "(p > 0.20)";
} elsif(($M1->element($rw, 1) < $fsamh) && ($fsamh < $M1->element($rw, 2)) ) {
$pp = "(0.10 < p < 0.20)";
} elsif(($M1->element($rw, 2) < $fsamh) && ($fsamh < $M1->element($rw, 3)) ) {
$pp = "(0.05 < p < 0.10)";
} elsif(($M1->element($rw, 3) < $fsamh) && ($fsamh < $M1->element($rw, 4)) ) {
$pp = "(0.02 < p < 0.05)";
} elsif(($M1->element($rw, 4) < $fsamh) && ($fsamh < $M1->element($rw, 5)) ) {
$pp = "(0.01 < p < 0.02)";
} elsif(($M1->element($rw, 5) < $fsamh) && ($fsamh < $M1->element($rw, 6)) ) {
$pp = "(0.001 < p < 0.01)";
} else{
$pp = "(p < 0.001)";
}
$popup9 = PopUp(
["??", '<', '>', '=', '< or =', '> or ='], '<');
$popup99 = PopUp(
["??", '<', '>', '=', '< or =', '> or ='], '<');
$popup19 = PopUp(
["??", '<', '>', '=', '< or =', '> or ='], '>');
$popupph = PopUp(
["which bracketed p-value?",
"(p > 0.40)", "(p > 0.20)","(0.20 < p < 0.40)","(0.10 < p < 0.20)", "(0.05 < p < 0.10)", "(0.025 < p < 0.05)", "(0.02 < p < 0.05)", "(0.01 < p < 0.025)","(0.01 < p < 0.02)", "(0.005 < p < 0.01)", "(0.001 < p < 0.01)", "(0.0001 < p < 0.001)", "(p < 0.01)", "(p < 0.001)", "(p < 0.0001)"], $pp );
#### this Should hold $pp as an answer above instead of "(p > 0.20)" ??
$popup29 = PopUp(
["??", '<', '>', '=', '< or =', '> or ='], '>');
$popup10 = PopUp(
["alpha", '0.20','0.10', '0.05', '0.02', '0.01', '0.001', '0.0001'], '0.05');
$popup11 = PopUp(
["??", 'all met, we can proceed', 'not met, we can not proceed', 'mostly met, we can proceed'], 'all met, we can proceed');
## IF needed and array sequence for Hartleys F test:
$fr = list_random(0, 1, 2, 3, 4, 5, 6); ## permits random selections of a specified range.
@falfa = ( '0.20','0.10', '0.05','0.02', '0.01', '0.001', '0.0001');
@falfap = ( '20%','10%', '5%','2%', '1%', '0.1%', '0.01%');
### Declaration of Variables: Step 2 ####
$popup3 = PopUp(
["Choose:", 'x-bar-i', 'mu-i', 'x-tilde-i', 'eta-i'], 'mu-i');
$popup4 = PopUp(
["Choose:", 'mean', 'median','standard deviation of', 'proportion of'], 'mean');
### Declaration of Hypothesis: Step 3 ####
$popup30 = PopUp(
["??", 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J'], 'D');
$popup31 = PopUp(
["??", 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J'], 'C');
$r = list_random(0, 1, 2, 3, 4, 5, 6); ## permits random selections of a specified range.
@alfa = ( '0.20','0.10', '0.05','0.02', '0.01', '0.001', '0.0001');
@alfap = ( '20%','10%', '5%','2%', '1%', '0.1%', '0.01%');
$alfp = "$alfap[$r]";
$LOS =Compute("100*$alfa[$r]");
$poplos = PopUp(
["alpha", '0.40', '0.20','0.10', '0.05','0.025', '0.02', '0.01', '0.001', '0.0001'], $alfa[$r]);
### Calculate values for ANOVA Table: Step 4
$h1=0;
foreach my $i (0..3) {
$sm1 =Compute("$h1 + $nr[$i]"); ## Summing all sample sizes
$h1 = $sm1;
}
$h2=0;
foreach my $i (0..3) {
$sm2 =Compute("$h2 + $nr[$i]*$xr[$i]"); ## Summing all n*xbars
$h2 = $sm2;
}
$gm2 =Compute("$sm2/$sm1"); ## the grand mean
$h3=0;
foreach my $i (0..3) {
$sm3 =Compute("$h3 + $nr[$i]*($xr[$i]-$gm2)**2"); ## Summing to ssb
$h3 = $sm3;
}
$h4=0;
foreach my $i (0..3) {
$sm4 =Compute("$h4 + ($nr[$i]-1)*($sr[$i])**2"); ## Summing to SSW
$h4 = $sm4;
}
$ssb=Compute("$sm3");
#$ssw =Compute("$sm4");
$ssw2 =Compute("$sm4");
$ssw1 =sprintf("%0.1f",$ssw2);
#$ssw =Compute("$ssw1");
$ssw = Compute($ssw1)->with(
tolType => 'relative',
tolerance => .005,
);
#$sst = Compute("$ssb+$ssw");
$sst = Compute("$ssb+$ssw")->with(
tolType => 'relative',
tolerance => .001,
);
$dfb = Compute("3");
$dfw = Compute("$sm1-4");
$dft = Compute("$dfb+$dfw");
$msb = Compute("$ssb/$dfb");
#$msw = Compute("$ssw/$dfw");
$msw2 = Compute("$ssw/$dfw");
$msw1 = sprintf("%0.3f",$msw2);
$msw = Compute("$msw1");
#$fsam = Compute("$msb/$msw");
$fsam = Compute("$msb/$msw")-> with(
tolType => 'absolute',
tolerance => .05, ); ## Wider tolerance x5 to permit some round off errors...
### ### A 2x7 matrix to find f-critical and bracket -p for the ANOVA test. ####
$M2 = Matrix([1.58, 2.14, 2.70, 3.43, 3.98, 5.86, 7.79], [1.57, 2.12, 2.67, 3.38, 3.92, 5.73, 7.57]);
if(($dfw >= 100) &&($dfw < 140)){
$ra =1;
@fcrit =('1.58','2.14', '2.70', '3.43', '3.98', '5.86', '7.79');
} else{
$ra =2;
@fcrit =('1.57','2.12', '2.67', '3.38', '3.92', '5.73', '7.57');
}
@finf =('1.55','2.08', '2.60', '3.28', '3.78', '5.425', '7.04');
$fin = Compute("$finf[$r]");
$fcrt =Compute("$fcrit[$r]");
if($fsam < $M2->element($ra, 1)){
$pa = "(p > 0.20)";
} elsif(($M2->element($ra,1) < $fsam) && ($fsam < $M2->element($ra,2)) ) {
$pa = "(0.10 < p < 0.20)";
} elsif(($M2->element($ra,2) < $fsam) && ($fsam < $M2->element($ra,3)) ) {
$pa = "(0.05 < p < 0.10)";
} elsif(($M2->element($ra,3) < $fsam) && ($fsam < $M2->element($ra,4)) ) {
$pa = "(0.02 < p < 0.05)";
} elsif(($M2->element($ra,4) < $fsam) && ($fsam < $M2->element($ra,5)) ) {
$pa = "(0.01 < p < 0.02)";
} elsif(($M2->element($ra,5) < $fsam) && ($fsam < $M2->element($ra,6)) ) {
$pa = "(0.001 < p < 0.01)";
} elsif(($M2->element($ra,6) < $fsam) && ($fsam < $M2->element($ra,7)) ) {
$pa = "(0.0001 < p < 0.001)";
} else{
$pa = "(p < 0.0001)";
}
$pop21 = PopUp(
["which bracketed p-value?",
"(p > 0.40)", "(p > 0.20)","(0.20 < p < 0.40)","(0.10 < p < 0.20)", "(0.05 < p < 0.10)", "(0.025 < p < 0.05)", "(0.02 < p < 0.05)", "(0.01 < p < 0.025)","(0.01 < p < 0.02)", "(0.005 < p < 0.01)", "(0.001 < p < 0.01)", "(0.0005 < p < 0.005)", "(p < 0.001)", "(p < 0.0001)"], "(p < 0.0001)" );
##### But $pa should be used above when ready....
#### Write a Statistical conclusion to the ANOVA hypothesis.
$popup40 = PopUp(
["??", '40%','20%','10%', '5%','2.5%', '2%', '1%', '0.1%', '0.01%'], $alfp);
$popup41 = PopUp(
["Choose:", 'Reject', 'Do Not Reject'], 'Reject');
@fcrit =('1.57','2.12', '2.67', '3.38', '3.92', '5.73', '7.57');
@finf =('1.55','2.08', '2.60', '3.28', '3.78', '5.42', '7.04');
$fcrt =Compute("$fcrit[$r]");
$fin = Compute("$finf[$r]");
$popup33 = PopUp(
["??", '<', '>', '=', '< or =', '> or ='], '>');
$popup34 = PopUp(
["??", '<', '>', '=', '< or =', '> or ='], '>');
$popup44 = PopUp(
["??", '<', '>'], '<');
$popup45 = PopUp(
["which bracketed p-value?",
"(p > 0.40)", "(p > 0.20)","(0.20 < p < 0.40)","(0.10 < p < 0.20)", "(0.05 < p < 0.10)", "(0.025 < p < 0.05)", "(0.02 < p < 0.05)", "(0.01 < p < 0.025)","(0.01 < p < 0.02)", "(0.005 < p < 0.01)", "(0.001 < p < 0.01)", "(0.0005 < p < 0.005)", "(p < 0.001)", "(p < 0.0001)"], "(p < 0.0001)" );
$popup46 = PopUp(
["??", '<', '>'], '<');
$popup47 = PopUp(
["alpha", '0.40', '0.20','0.10', '0.05','0.025', '0.02', '0.01', '0.001', '0.0001'], $alfa[$r] );
$popup48 = PopUp(
["Choose:", 'varies', 'does not vary'], 'varies');
#### Begin Problem...
#### M3 is a 30 x 7 Matrix of wrong critical values that students are likely
#### to submit as answers for Hartley's F-max Critical Value.
#### Flagging these entries will prompt the
#### student of the type of error made. Note that the F-max table will have
#### duplicate values on the last row as it has one less column than
#### the ANOVA f-critical values and this is the "mesh" for this case.
#### fcrtw1: Row 1 = used df(3,120), should be df =4 for F-max critical
#### Wrong F-max: df = (3, 20:28) at rows 2-10,
#### Wrong F-Critical df = (3, 20:28) at rows 11-19,
#### Wrong F-Critical (4, 20:28) at rows 20-28,
#### Wrong F-Critical Row 29 = df(3,140), Row 30 = df(4,140)
$M3 = Matrix([1.37, 1.46, 1.54, 1.64, 1.71, 1.94, 1.94], [1.63, 1.88, 2.13, 2.46, 2.72, 3.65, 3.65], [2.19, 2.57, 2.95, 3.48, 3.90, 5.50, 5.50], [2.15, 2.51, 2.87, 3.37, 3.76, 5.25, 5.25],[2.11, 2.45, 2.80, 3.27, 3.64, 5.03, 5.03], [2.07, 2.40, 2.73, 3.18, 3.53, 4.84, 4.84], [2.04, 2.35, 2.67, 3.10, 3.43, 4.66, 4.66], [2.01, 2.31, 2.61, 3.02, 3.34, 4.51, 4.51], [1.98, 2.27, 2.56, 2.95, 3.26, 4.36, 4.36], [1.95, 2.24, 2.52, 2.89, 3.18, 4.23, 4.23], [1.93, 2.20, 2.47, 2.83, 3.11, 4.12, 4.12], [1.70, 2.38, 3.10, 4.11, 4.94, 8.10, 12.05], [1.69, 2.36, 3.07, 4.07, 4.87, 7.94, 11.73], [1.68, 2.35, 3.05, 4.03, 4.82, 7.80, 11.44], [1.68, 2.34, 3.03, 3.99, 4.76, 7.67, 11.19], [1.67, 2.33, 3.01, 3.96, 4.72, 7.55, 10.96], [1.66, 2.32, 2.99, 3.93, 4.68, 7.45, 10.76], [1.66, 2.31, 2.98, 3.90, 4.64, 7.36, 10.58], [1.65, 2.30, 2.96, 3.87, 4.60, 7.27, 10.41], [1.65, 2.29, 2.95, 3.85, 4.57, 7.19, 10.26], [1.65, 2.25, 2.87, 3.73, 4.43, 7.10, 10.41], [1.65, 2.23, 2.84, 3.69, 4.37, 6.95, 10.12], [1.64, 2.22, 2.82, 3.65, 4.31, 6.81, 9.86], [1.63, 2.21, 2.80, 3.61, 4.26, 6.70, 9.63], [1.63, 2.19, 2.78, 3.58, 4.22, 6.59, 9.42], [1.62, 2.18, 2.76, 3.55, 4.18, 6.49, 9.24], [1.62, 2.17, 2.74, 3.52, 4.14, 6.41, 9.07],[1.61, 2.17, 2.73, 3.50, 4.11, 6.33, 8.92], [1.61, 2.16, 2.71, 3.47, 4.07, 6.25, 8.79], [1.57, 2.12, 2.67, 3.38, 3.92, 5.73, 7.57], [1.52, 1.99, 2.44, 3.02, 3.46, 4.90, 6.35]);
$fcrtw1 = $M3->element(1, 3); ##F-max: k=3, dfw = 120, alpha = 5%
$fcrtw2 = $M3->element(1, $rw-1); ##F-max: k=3, dfw = 120, alpha = a%
$fcrtw3 = $M3->element($rw+2, 3); ##F-max: k=3, dfw = good, alpha = 5%
$fcrtw4 = $M3->element($rw+2, $rw-1); ##F-max: k=3, dfw = good, alpha = a%
$fcrtw5 = $M3->element($rw+11, 3); ##F-Crit: k=3, dfw = good, alpha = 5%
$fcrtw6 = $M3->element($rw+11, $rw-1); ##F-Crit: k=3, dfw = good, alpha = a%
$fcrtw7 = $M3->element($rw+20, 3); ##F-Crit: k=4, dfw = good, alpha = 5%
$fcrtw8 = $M3->element($rw+20, $rw-1); ##F-Crit: k=4, dfw = good, alpha = a%
$fcrtw9 = $M3->element(30, 3); ##F-Crit: k=3, dfw = 140, alpha = 5%
$fcrtw10 = $M3->element(30, $rw-1); ##F-Crit: k=3, dfw = 140, alpha = a%
$fcrtw11 = $M3->element(31, 3); ##F-Crit: k=4, dfw = 140, alpha = 5%
$fcrtw12 = $M3->element(31, $rw-1); ##F-Crit: k=4, dfw = 140, alpha = a%
BEGIN_PGML
*Drawn from Lecture Notes: Week 11 Day 2, Week 12 Day 2, and Week 12 Day 3.*
[@
DataTable(
[
["$BBOLD 25.3) $EBOLD The bright yellow head of the adult male Egyptian vulture requires carotenoid pigments. The brighter the yellow pigment, the more likely that the male will attract a mate. These pigments can not be synthesized by the vultures, so they must be obtained through their diet. Unfortunately, carotenoids are scarce in rotten flesh and bones, but they are readily available in the dung of ungulates. Which is why Egyptian vultures are frequently seen eating the droppings of cows, goats, and sheep in Spain, where they have been studied."," ",[" An Egyptian Vulture, $BITALIC Neophron percnopterus $EITALIC".$BR.image( "Yellowhead.png", width=>743, height=>382, tex_size=>700 ).$BR."image by San Diego Zoo Safari Park" ]]],
caption => "Does the Carotenoid Pigment of the Egyptian Vulture Vary by Region?",
midrules=>0,
align => "p{3.5in} p{0.1in} p{4.2in}"
);
@]***
Ungulates are common in some areas but not in others. Could the variation in yellow pigment coloring of the Egyptian vulture be due to a variation in the availability in ungulate dung? Negro et al. (2002) measured plasma carotenoids in wild Egyptian vultures caught at four regions in Spain as part of a study to determine the causes of variation among the sites in carotenoid availability. Their data (altered slightly for randomization and preliminary checks) is summarized in the table below. Use a one way ANOVA hypothesis at a [$LOS]% LOS with preliminary checks to determine if the mean serum pigment ([`\mu g/ml`]) of the Egyptian vulture is significantly different for the four selected regions in Spain.
* Spaniards have nicknamed the Egyptian vulture [`mo\tilde n iguero`] which politely translates to "dung eater".
*Source: Whitlock and Shluter, "The Analysis of Biological Data", page 490.
*image source from http://www.sdzsafaripark.org/wildlife/egyptian-vulture: [@ htmlLink( "http://www.sdzsafaripark.org/wildlife/egyptian-vulture","Egyptian vulture" ) @]***
[@
DataTable(
[
[["Site ", headerrow => 1],"N","\\(\\bar x\\) plasma carotenoids $BR concentration (\\(\\mu g/ml\\))", "Standard $BR deviation",],
[["$jnn" ], "$jn", "$jx", "$js"],
],
caption => " ",
midrules => 1,
align => "|p{0.3in}|p{0.3in}|p{1.8in}|p{0.8in}|",
);
@]***
*25.3) Step 1a: Preliminary Checks*
* The data sets are collected from [$popup1->menu]* and random samples.
* With summarized data, we assume that all data sets [$popup2->menu]* a normality test by the Anderson-Darling normality test, as we are using mean values.
*25.3) Step 1b:* Check for Homoscedastity (equal variances):
[@
DataTable(
[
[["Because of unequal sample sizes we must first calculate a harmonic mean for the grouped sample size, \\(n^{\\prime}.\\) "]," ","\\(\\displaystyle{n^{\\prime} = \\frac{k}{\\frac{1}{n_1}+\\frac{1}{n_2}+...+\\frac{1}{n_k}}}\\) "],
],
caption => " ",
midrules => 0,
align => "p{3.8in}p{0.3in}p{3in}",
);
@]***
[`n'`] = [_____] Use at least second decimal accuracy
[`n'`] = [_____] Rounded up to the next integer for f-table use.
Establish the decision line for Hartley's Equal variance test. Recognize that this is NOT the decision line for the ANOVA test, rather it is the decision line for the preliminary check of equal variances, without which we can not proceed with the ANOVA test.
For Hartley's test: df = (k, [`n'`]-1) = [`\Large{(}`] [____] [`\Large{,}`][____] [`\Large{)}`]
[`\hspace{50pt}`] [$popup5->menu]* [`\hspace{120pt}`] [$popup6->menu]*
[@ image( "DecisionLine2.png", width=>690, height=>25, tex_size=>700, extra_html_tags=>'alt="A decision for the hypothesis on equal variances." ' ) @]***
[`\hspace{120pt} \Large{F_{critical} =}`] [____]
*25.3) Step 1c:* The statistical conclusion for Hartley's F test is:
At the [$popup7->menu]* LOS we [$popup8->menu]* the null hypothesis of [``\large{H_o }``], because:
[@
DataTable(
[
[" \\(\\large{F}\\)-Notational $BR Support: $BR $BR Numeric $BR Validation: "," \\(\\hspace{10pt}\\) \\(\\large{F_{sample}}\\) \\(\\hspace{2pt}\\) ".$popup9->menu." \\(\\hspace{2pt}\\) \\(\\large{F _{critical}}\\) $BR $BR ".$fsamh->ans_rule(5)." ".$popup99->menu. " ".$fcrth->ans_rule(5). " "],
],
caption => " ",
midrules=>0,
align => "p{1.2in}p{7in}"
);
@]***
[@
DataTable(
[
["p-Notational $BR Support: $BR $BR Numeric $BR Validation: "," \\(\\hspace{115pt}\\) \\(\\Large{p} \\hspace{2pt}\\) ".$popup19->menu."\\(\\hspace{2pt} \\Large{\\alpha}\\) $BR $BR ".$popupph->menu."".$popup29->menu."".$popup10->menu."" ],
],
caption => " ",
midrules=>0,
align => "p{1.2in}p{7in}"
);
@]***
With the preliminary checks of independent and random samples, a normal distribution and equal variances, [$popup11->menu]* with a one-way ANOVA test.
*25.3) Step 2:* Declare the variables for this hypothesis test:
[@
DataTable(
[
["$BBOLD Note! $EBOLD Because of the limitations in software most special characters cannot be included in a 'pop-up' answer format and yet they are needed for the hypothesis formation. The pop-up selections will be in the text-form for the special characters embedded within the pop-up answer. Use the table at the right as a guide if needed."," ",[image( "musubi.png", width=>189, height=>198, tex_size=>700 )],[image( "muby4.png", width=>258, height=>266, tex_size=>700 ) ] ]
],
caption => "English text equivalence for the Variable and Hypothesis Options: ",
midrules=>0,
align => "p{2.5in} p{0.1in} p{2in}p{2.5in}"
);
@]***
*25.3) Step 2:* Declare the variables for this hypothesis test:
[$popup3->menu]* = The [$popup4->menu]* plasma concentration of carotenoids in ([`\mu g/ml`]) for a wild Egyptian vulture from the [`i^{th}`] region in Spain.
.
*25.3) Step 3)* Choose the correct hypothesis statement to test the claim that the mean plasma concentration of carotenoids in ([`\mu g/ml`]) for a wild Egyptian vulture varies by region. Test the hypothesis at a [$LOS]% LOS.
[``\Large{H_o:}``] [$popup30->menu]*
[``\Large{H_a:}``] [$popup31->menu]*
[``\Large{\alpha =}``] [$poplos->menu]*
*25.3) Step 4)* Complete the partially filled ANOVA table as an aid in forming the conclusion for the ANOVA hypothesis.
[@
DataTable(
[
[["Source ", headerrow => 1],"Sum of Squares $BR (SS)", "Degrees of $BR freedom: df","Mean Squares $BR (MS)","F-sample"],
[["Between $BR Groups"], "SSB = $ssb", "\\(df_b\\) =".$dfb->ans_rule(1)."", "MSB =".$msb->ans_rule(4)."", "\\(F_{Sample}\\) =".$fsam->ans_rule(4).""],
[["Within $BR Groups"], "SSW = $ssw", "\\(df_w\\) =".$dfw->ans_rule(1)."", "MSW =".$msw->ans_rule(4)."", "$BBOLD Bracketed p-value: $EBOLD"],
[["Total"], "SST =".$sst->ans_rule(4)."", "\\(df_t\\) =".$dft->ans_rule(1)."", "", " ".$pop21->menu.""],
],
caption => "ANOVA TABLE ",
midrules => 1,
align => "|p{0.6in}|p{1.3in}|p{1.1in}||p{1.4in}|p{2in}|",
);
@]***
*25.3), Step 5)* Write a statistical conclusion for the ANOVA hypothesis.
At the [$popup40->menu]* LOS we [$popup41->menu]* the null hypothesis of [``\large{H_o }``], because:
[@
DataTable(
[
[" df and \\(\\large{F}\\) $BR Notation $BR Support: $BR $BR Numeric $BR Validation: "," \\(\\hspace{2pt}\\) \\(df = (df_B , df_W\\)) = \\(\\large{(}\\) ".$dfb->ans_rule(1)."\\(\\large{,}\\)".$dfw->ans_rule(1)."\\(\\large{)}\\) $BR $BR \\(\\hspace{11pt}\\) \\(\\large{F_{sample}}\\) \\(\\hspace{1pt}\\) ".$popup33->menu." \\(\\hspace{1pt}\\) \\(\\large{F_{critical}}\\) $BR $BR ".$fsam->ans_rule(5)." ".$popup34->menu."".$fcrt->ans_rule(5)."" ],
],
caption => " ",
midrules=>0,
align => "p{1.2in}p{7in}"
);
@]***
[@
DataTable(
[
["p-Notational $BR Support: $BR $BR Numeric $BR Validation: "," \\(\\hspace{65pt}\\) \\(\\Large{p} \\hspace{2pt}\\) ".$popup44->menu."\\(\\hspace{2pt} \\Large{\\alpha}\\) $BR $BR \\(\\Large{p} = \\hspace{2pt}\\)".$popup45->menu."".$popup46->menu."".$popup47->menu."" ],
],
caption => " ",
midrules=>0,
align => "p{1.2in}p{7in}"
);
@]***
*25.3), Step 6)* Write an English sentence conclusion.
The evidence supports the case that mean plasma carotenoid concentration in [`\mu g/ml`] of Egyptian vultures [$popup48->menu]* according to region.
END_PGML
#Adapted weighted answers values:
## Problems 25.3 ##
##Preliminary checks:
WEIGHTED_ANS( ($popup1)->cmp, 1 );
WEIGHTED_ANS( ($popup2)->cmp, 1 );
## Check for Equal Variances:
WEIGHTED_ANS( ($nprime)->cmp, 5 );
WEIGHTED_ANS( ($npc)->cmp, 1 );
WEIGHTED_ANS( ($dfhn)->cmp, 2 );
WEIGHTED_ANS( ($dfhd)->cmp, 2 );
WEIGHTED_ANS( ($popup5)->cmp, 1 );
WEIGHTED_ANS( ($popup6)->cmp, 1 );
WEIGHTED_ANS( $fcrth->cmp() ->withPostFilter(AnswerHints(
$fcrth => "Yes!",
$fcrtw1 => "Wrong F-max Table, and both df are wrong: dfn = number of treatments, k, you used df = k - 1. And dfd = n' -1, but you summed data and subtracted the number of groups. You forgot the harmonic mean.",
$fcrtw2 => "Wrong F-max Table, and both df are wrong: dfn = number of treatments, k, you used df = k - 1. And dfd = n' -1, but you summed data and subtracted the number of groups. You forgot the harmonic mean. Also you are using the wrong alpha value.",
$fcrtw3 => "Wrong F-max Table. Your df is wrong: dfn = number of treatments, k, but you used df = k - 1.",
$fcrtw3 => "Wrong F-max Table. Your df is wrong: dfn = number of treatments, k, but you used df = k - 1. Also you are using the wrong alpha value.",
$fcrtw5 => "Wrong Table! You are using the ANOVA F-critical table but the test for equal variances uses the F-max table. And your df are wrong: dfn = number of treatments, k, while you used df = k - 1.",
$fcrtw6 => "Wrong Table! You are using the ANOVA F-critical table but the test for equal variances uses the F-max table. And your df are wrong: dfn = number of treatments, k, while you used df = k - 1. Also you have the wrong alpha value. Get it together!",
$fcrtw7 => "Wrong Table! You are using the ANOVA F-critical table but the test for equal variances uses the F-max table.",
$fcrtw8 => "Wrong Table! You are using the ANOVA F-critical table but the test for equal variances uses the F-max table. And you are using the wrong alpha value.",
$fcrtw9 => "Wrong Table! You are using the ANOVA F-critical table but the test for equal variances uses the F-max table. Also both df values are wrong and you did not use the harmonice mean. Try checking out the example problem in Lecture Week 12 day 3.",
$fcrtw10 => "Wrong Table! You are using the ANOVA F-critical table but the test for equal variances uses the F-max table. Also both your df values are wrong. You did not use the harmonic mean, n'-1 to find it. And your alpha value is wrong. Try checking out the example problem in Lecture Week 12 day 3.",
$fcrtw11 => "Wrong Table! You are using the ANOVA F-critical table but the test for equal variances uses the F-max table. Also your 2nd df value is wrong. You summed up data point rather than use the harmonic mean, n'-1 to find it. Try checking out the example problem in Lecture Week 12 day 3.",
$fcrtw12 => "Wrong Table! You are using the ANOVA F-critical table but the test for equal variances uses the F-max table. Also your 2nd df value is wrong. You summed up data point rather than use the harmonic mean, n'-1 to find it. And your alpha value is wrong. Try checking out the example problem in Lecture Week 12 day 3.",
)),3 );
WEIGHTED_ANS( ($popup7)->cmp, 1 );
WEIGHTED_ANS( ($popup8)->cmp, 1 );
WEIGHTED_ANS( ($popup9)->cmp, 1 );
WEIGHTED_ANS( ($fsamh)->cmp, 7 );
WEIGHTED_ANS( ($popup99)->cmp, 1 );
WEIGHTED_ANS( ($fcrth)->cmp, 5 );
WEIGHTED_ANS( ($popup19)->cmp, 1 );
WEIGHTED_ANS( ($popupph)->cmp, 4 );
WEIGHTED_ANS( ($popup29)->cmp, 1 );
WEIGHTED_ANS( ($popup10)->cmp, 2 );
WEIGHTED_ANS( ($popup11)->cmp, 1 );
## Declare Variables:
WEIGHTED_ANS( ($popup3)->cmp, 2 );
WEIGHTED_ANS( ($popup4)->cmp, 2 );
##Declare Hypothesis and LOS:
WEIGHTED_ANS( ($popup30)->cmp, 2 );
WEIGHTED_ANS( ($popup31)->cmp, 2 );
WEIGHTED_ANS( ($poplos)->cmp, 2 );
### ANOVA Table Entries:
#WEIGHTED_ANS( ($ssb)->cmp, 2 );
#WEIGHTED_ANS( ($ssw)->cmp, 2 );
WEIGHTED_ANS( ($dfb)->cmp, 2 );
WEIGHTED_ANS( ($msb)->cmp, 3 );
WEIGHTED_ANS( ($fsam)->cmp, 4 );
WEIGHTED_ANS( ($dfw)->cmp, 3 );
WEIGHTED_ANS( ($msw)->cmp, 3 );
WEIGHTED_ANS( ($sst)->cmp, 2 );
WEIGHTED_ANS( ($dft)->cmp, 1 );
WEIGHTED_ANS( ($pop21)->cmp, 2 );
##### ANOVA Statistical Conclusion: Step 5
WEIGHTED_ANS( ($popup40)->cmp, 2 );
WEIGHTED_ANS( ($popup41)->cmp, 2 );
WEIGHTED_ANS( ($dfb)->cmp, 2 );
WEIGHTED_ANS( ($dfw)->cmp, 2 );
WEIGHTED_ANS( ($popup33)->cmp, 1 );
WEIGHTED_ANS( ($fsam)->cmp, 3 );
WEIGHTED_ANS( ($popup34)->cmp, 1 );
WEIGHTED_ANS( $fcrt->cmp() ->withPostFilter(AnswerHints(
$fcrt => "Yes!",
$fin => "No, We should never round a df up to infinity",
$fcrtw11 => "Wrong Table! You are using the ANOVA F-critical table (yes) but your first df value is wrong. You need to subtract one from the number of groups (k-1) to find it. Also your alpha is possibly wrong. Try checking out the example problem in Lecture Week 12 day 3.",
$fcrtw12 => "Wrong Table! You are using the ANOVA F-critical table but your first df value is wrong. You need to subtract one from the number of groups (k-1) to find it. Try checking out the example problem in Lecture Week 12 day 3.",
$fcrth => "Wrong Table! That is the F-max critical value used for the equal variance test. You should be using the ANOVA F-critical table but your df value is wrong. You need to subtract one from the number of groups (k-1) to find it. Try checking out the example problem in Lecture Week 12 day 3. Also your alpha is likely wrong.",
$fcrtw1 => "Wrong Table! You are using the F-Max table and but should be using F-critical table for ANOVAs. Also you are using the wrong alpha value.",
$fcrtw2 => "Wrong Table! You are using the F-Max table and but should be using F-critical table for ANOVAs.",
$fcrtw3 => "Wrong Table! You are using the F-Max table and but should be using F-critical table for ANOVAs. Also your 2nd df and alpha values are wrong.",
$fcrtw4 => "Wrong Table! You are using the F-Max table and but should be using F-critical table for ANOVAs. Also your 2nd df value is wrong.",
$fcrtw5 => "Wrong 2nd df and possibly alpha! It seems like you used the harmonic mean to find your 2nd df when that method is only used for the equal variance test, not ANOVAs.",
$fcrtw6 => "Wrong 2nd df! It seems like you used the harmonic mean to find your 2nd df when that method is only used for the equal variance test, not ANOVAs.",
$fcrtw7 => "Both df values and possibly alpha are wrong! It seems like you used the harmonic mean to find your 2nd df when that method is only used for the equal variance test, not ANOVAs.",
$fcrtw8 => "Both df values are wrong! It seems like you used the harmonic mean to find your 2nd df when that method is only used for the equal variance test, not ANOVAs.",
)),4 );
WEIGHTED_ANS( ($popup44)->cmp, 1 );
WEIGHTED_ANS( ($popup45)->cmp, 3 );
WEIGHTED_ANS( ($popup46)->cmp, 1 );
WEIGHTED_ANS( ($popup47)->cmp, 1 );
WEIGHTED_ANS( ($popup48)->cmp, 1 );
###############################
BEGIN_PGML_SOLUTION
*25.2) Step 1a: Preliminary Checks*
* The data sets are collected from [$popup1] and random samples.
* With summarized data, we assume that all data sets [$popup2] a normality test by the Anderson-Darling normality test, as we are using mean values.
*25.2) Step 1b:* Check for Homoscedastity (equal variances):
[@
DataTable(
[
[["Site ", headerrow => 1],"N","\\(\\bar x\\) plasma carotenoids $BR concentration (\\(\\mu g/ml\\))", "Standard $BR deviation",],
[["$jnn" ], "$jn", "$jx", "$js"],
],
caption => " ",
midrules => 1,
align => "|p{0.3in}|p{0.3in}|p{1.8in}|p{0.8in}|",
);
@]***
[@
DataTable(
[
[["Because of unequal sample sizes we must first calculate a harmonic mean for the grouped sample size, \\(n^{\\prime}.\\) $BR $BR Then \\(\\quad \\displaystyle{n^{\\prime} = \\frac{k}{\\frac{1}{n_1}+\\frac{1}{n_2}+...+\\frac{1}{n_k}} }\\) $BR $BR \\(\\displaystyle{n^{\\prime} = \\frac{4}{\\frac{1}{$nr[0]}+\\frac{1}{$nr[1]}+\\frac{1}{$nr[2]} +\\frac{1}{$nr[3]}}}\\) $BR $BR \\( n^{\\prime} = $nprime \\) $BR $BR The degrees of freedom for the equal variance test is \\( df = n^{\\prime} \\text{ (rounded up) } -1 \\) $BR $BR \\(df = $npc - 1 = $npf\\) $BR $BR Now we can find the F-critical value for Hartley's F-max test for Equal variances by referencing the F-max table with 4 treatments: (at the right) $BR $BR With \\(k = 4 \\) groups (treatments) and \\(df = $npf \\) and the standard LOS of 5% we find the \\(F_{critical} = F_{4, $npf} = $fcrth \\) $BR $BR Next we calculate the F-sample value for the F-max test: $BR $BR
\\(F_{sample} = \\frac{(sd_{max})^2}{(sd_{min})^2} = \\frac{($mxsd)^2}{($mnsd)^2} = $fsamh \\)"], " ",image( "Fmax4.png", width=>313, height=>632, tex_size=>700, extra_html_tags=>'alt="An image of the F-max table for F-critical values for degrees of freedom of 4." ' ) ],
],
caption => " ",
midrules => 0,
align => "p{3.8in}p{0.3in}p{2.3in}",
);
@]***
Establish the decision line for Hartley's Equal variance test. Recognize that this is NOT the decision line for the ANOVA test, rather it is the decision line for the preliminary check of equal variances, without which we can not proceed with the ANOVA test.
For Hartley's test: df = (k, [`n'`]-1) = [``\large{(4, [$npf] )}``]
[`\hspace{50pt}`] *Do Not Reject Ho* [`\hspace{120pt}`] *Reject Ho*
[@ image( "DecisionLine2.png", width=>690, height=>25, tex_size=>700, extra_html_tags=>'alt="A decision for the hypothesis on equal variances." ' )@]***
[``\hspace{160pt} \large{F_{4, [$npf] } = [$fcrth]}``]
*25.3) Step 1c:* The statistical conclusion for Hartley's F test is:
At the [$popup7] LOS we [$popup8] the null hypothesis of [``\large{H_o }``], because:
[@
DataTable(
[
[" \\(\\large{F}\\)-Notational $BR Support: $BR $BR Numeric $BR Validation: "," \\(\\hspace{10pt} \\large{F_{sample}} \\hspace{2pt} $popup9 \\hspace{2pt} \\large{F _{critical}}\\) $BR $BR \\( \\hspace{10pt} $fsamh $popup99 $fcrth \\) "],
],
caption => " ",
midrules=>0,
align => "p{1.2in}p{7in}"
);
@]***
[@
DataTable(
[
["p-Notational $BR Support: $BR $BR Numeric $BR Validation: "," \\(\\hspace{30pt}\\large{p} \\hspace{2pt} $popup19 \\hspace{2pt} \\large{\\alpha}\\) $BR $BR \\( $popupph $popup29 $popup10 \\)" ],
],
caption => " ",
midrules=>0,
align => "p{1.2in}p{7in}"
);
@]***
With the preliminary checks of independent and random samples, a normal distribution and equal variances, [$popup11] with a one-way ANOVA test.
*25.3) Step 2:* Declare the variables for this hypothesis test:
[``\mu_i``] = The *mean* plasma concentration of carotenoids in ([`\mu g/ml`]) for a wild Egyptian vulture from the [`i^{th}`] region in Spain.
*25.3) Step 3)* Choose the correct hypothesis statement to test the claim that the mean emission rate in (ng/hour) for a potato plant varies depending upon the type of attacking insect. Test the hypothesis at a [$LOS]% LOS.
[``\large{H_o \hspace{-3pt}: \hspace{3pt} \mu_1 = \mu_2 = \mu_3 = \mu_4 }``]
[``\large{H_a \hspace{-3pt}: \hspace{3pt} }``] *At least one mean is not equal*
[``\large{\alpha = [$poplos]}``]
*25.3) Step 4)* Complete the partially filled ANOVA table as an aid in forming the conclusion for the ANOVA hypothesis.
[@
DataTable(
[
[["Source ", headerrow => 1],"Sum of Squares $BR (SS)", "Degrees of $BR freedom: df","Mean Squares $BR (MS)","F-sample"],
[["Between $BR Groups"], "SSB = $ssb", "\\(df_b\\) = $dfb ", "MSB = $msb ", "\\(F_{Sample}\\) = $fsam "],
[["Within $BR Groups"], "SSW = $ssw" , "\\(df_w\\) = $dfw ", "MSW = $msw" , "$BBOLD Bracketed p-value: $EBOLD"],
[["Total"], "SST = $sst ", "\\(df_t\\) = $dft ", "", " $pop21 "],
],
caption => "ANOVA TABLE ",
midrules => 1,
align => "|p{0.6in}|p{1.3in}|p{1.1in}||p{1.4in}|p{2in}|",
);
@]***
*25.3), Step 5)* Write a statistical conclusion for the ANOVA hypothesis.
At the [$popup40] LOS we [$popup41] the null hypothesis of [``\large{H_o }``], because:
[@
DataTable(
[
[" df and \\(\\large{F}\\) $BR Notation $BR Support: $BR $BR Numeric $BR Validation: "," \\(\\hspace{2pt} df = (df_B , df_W ) = ( $dfb , \\, $dfw ) \\) $BR $BR \\( \\large{F_{sample}} $popup33 \\large{F_{critical}}\\) $BR $BR \\( $fsam $popup34 $fcrt \\)" ],
],
caption => " ",
midrules=>0,
align => "p{1.2in}p{7in}"
);
@]***
[@
DataTable(
[
["p-Notational $BR Support: $BR $BR Numeric $BR Validation: "," \\(\\hspace{20pt} \\large{p} \\hspace{2pt} $popup44 \\hspace{2pt} \\large{\\alpha}\\) $BR $BR \\(\\hspace{2pt} $popup45 $popup46 $popup47 \\)" ],
],
caption => " ",
midrules=>0,
align => "p{1.2in}p{7in}"
);
@]***
*25.3), Step 6)* Write an English sentence conclusion.
The evidence supports the case that mean plasma carotenoid concentration in [`\mu g/ml`] of Egyptian vultures [$popup48] according to region.
END_PGML_SOLUTION
ENDDOCUMENT();##DESCRIPTION
## ANOVA, SNK test
##ENDDESCRIPTION
## KEYWORDS('anova', 'snk test')
## DBsubject('Statisitics')
## DBchapter('confidence intervals')
## DBsection('Real Numbers')
## Date('11/7/2016')
## Author('Tim Payer')
# DESCRIPTION ANOVA, SNK test
# Use correct notation.
# WeBWorK problem written by TimPayer <tsp1@humboldt.edu>
# ENDDESCRIPTION
## DBsubject(Probability)
## DBchapter(Random variables)
## DBsection(Expectation)
## Institution(Humboldt State University)
## Author(Tim Payer)
## KEYWORDS(probability, translate, notation)
DOCUMENT();
loadMacros(
"PGstandard.pl",
"PGunion.pl",
"PGnumericalmacros.pl",
"PGstatisticsmacros.pl",
"MathObjects.pl",
"parserPopUp.pl",
"PGML.pl",
"unionTables.pl",
"niceTables.pl",
"PGcourse.pl",
"PGchoicemacros.pl",
"answerHints.pl",
"weightedGrader.pl"
);
install_weighted_grader();
TEXT(beginproblem());
#install_problem_grader(~~&std_problem_grader);
$showPartialCorrectAnswers = 1;
Context("Numeric");
Context()->flags->set(
tolerance => 0.01,
tolType => "absolute",
);
## Note that the wide tolerance was preventing a correct bracketing of the
## p-value for $fsamh. knocking the tolerance back down redirects the issue
## toward generating a correct SSW value and direct calculation may be needed..
############ Start Problem 25.1 ##################
### Summarized Data table values:
@nn =();
$nn[0] = Compute("1");
$nn[1] = Compute("2");
$nn[2] = Compute("3");
$nn[3] = Compute("4");
### sample size per group:
@nr =();
$nr[0] = random(19,25,1);
$nr[1] = random(68,77,1);
$nr[2] = random(70,82,1);
$nr[3] = random(9,13,1); ## widen from (9, 13) which was producing a tiny sd?
#############################################
## This next block generates raw data for each group
## and then finds the summarizing values of the mean and sd.
## Start with an empty array and subtract one to account for
## arrays that start at zero to mesh with sample size:
################################################
## Site 1
@cont = ();
foreach my $i ( 0..$nr[0] - 1 ) {
$cont[$i] = random(4.6, 12.6,0.01); # diff = 8
}
$contm = stats_mean(@cont);
$conts = stats_sd(@cont);
$control = join(", ",@cont);
## Site 2
@flea = ();
foreach my $i ( 0..$nr[1] - 1 ) {
$flea[$i] = random(2.51,11.51,0.01); # diff = 9
}
$fleam = stats_mean(@flea);
$fleas = stats_sd(@flea);
$fleab = join(", ",@flea);
## Site 3
@copb = ();
foreach my $i ( 0..$nr[2] - 1 ) {
$copb[$i] = random(3.10,13.1,0.01); # diff = 10
}
$copbm = stats_mean(@copb);
$copbs = stats_sd(@copb);
$copbb = join(", ",@copb);
## Site 4
@ww = ();
foreach my $i ( 0..$nr[3] - 1 ) {
$ww[$i] = random(9.50, 19.5,0.01); # diff = 10
}
### I need to have a check in the loops above to prevent small sds
### from occurring as they will tend cause Hartley test to fail when
### other sds are large. That is,
### the F-sample will be too large relative to the F-critical.
### Then the check must be for a wide enough range to anticipate the
### comparitive sd values for the F-max test?
$wwm = stats_mean(@ww);
$wws = stats_sd(@ww);
$wwb = join(", ",@ww);
##################################
@sr =();
$sr[0] = sprintf("%0.1f",$conts);
$sr[1] = sprintf("%0.1f",$fleas);
$sr[2] = sprintf("%0.1f",$copbs);
$sr[3] = sprintf("%0.1f",$wws);
#### Finding the largest and smallest sd for F-max test:
my $index = 0;
my $maxsd = $sr[ my $index ];
for ( 0 .. 3 )
{
if ( $maxsd < $sr[$_] )
{
$index = $_;
$maxsd = $sr[$_];
}
}
$mxsd = $maxsd;
my $index = 0;
my $minsd = $sr[ my $index ];
for ( 0 .. 3 )
{
if ( $minsd > $sr[$_] )
{
$index = $_;
$minsd = $sr[$_];
}
}
$mnsd = $minsd;
###### Rounding Sample means....
@xr =();
$xr[0] = sprintf("%0.1f",$contm);
$xr[1] = sprintf("%0.1f",$fleam);
$xr[2] = sprintf("%0.1f",$copbm);
$xr[3] = sprintf("%0.1f",$wwm);
$jnn = join("$BR ",@nn);
$jn = join("$BR ",@nr);
$jx = join("$BR ",@xr,);
$js = join("$BR ",@sr);
$trial = random(3, 9, 1);
## Preliminary Checks: Step 1 ####
$popup1 = PopUp(
["Choose:", 'independent', 'dependent'], 'independent');
$popup2 = PopUp(
["Choose:", 'pass', 'fail'], 'pass');
## Preliminary Checks: Step 1b, Equal variances ####
$nprime = Compute("4/(1/$nr[0]+1/$nr[1]+1/$nr[2]+1/$nr[3])");
$npff =floor($nprime);
$npf = Compute("$npff");
$npc = Compute("$npff+1");
$popup5 = PopUp(
["Choose:", 'Reject', 'Do Not Reject'], 'Do Not Reject');
$popup6 = PopUp(
["Choose:", 'Reject', 'Do Not Reject'], 'Reject');
$popup7 = PopUp(
["??", '40%','20%','10%', '5%','2.5%', '2%', '1%', '0.1%', '0.01%'], '5%');
$popup8 = PopUp(
["Choose:", 'Reject', 'Do Not Reject'], 'Do Not Reject');
##### Older code for previous-pre-matrix attempts ####
$dfhn =Compute("4"); ## Delete when replaced
$dfhd =Compute("$npf"); ## Delete when replaced
######################
## Using a matrix to determine F-critical for Hartleys test, alpha = 0.05
## Listing the F-Critical values for Hartley's with df = (4, 20:28)
$M1 = Matrix([2.46, 2.87, 3.28, 3.84, 4.29, 5.99], [2.41, 2.79, 3.18, 3.71, 4.13, 5.71], [2.36, 2.72, 3.09, 3.59, 3.99, 5.46], [2.31, 2.66, 3.01, 3.49, 3.86, 5.24], [2.27, 2.60, 2.94, 3.39, 3.74, 5.04], [2.23, 2.55, 2.87, 3.30, 3.64, 4.86], [2.19, 2.50, 2.81, 3.22, 3.54, 4.70], [2.16, 2.46, 2.75, 3.15, 3.45, 4.55], [2.13, 2.42, 2.70, 3.08, 3.37, 4.42]);
## F-sample for Hartleys: max/min variances based on max/min diff.
$fsamh = Compute("$maxsd**2/$minsd**2");
$rw =$npf-19; ## Letting dfw reset from rows 20-28 to rows 1-9
$fcrth = $M1->element($rw, 3); ## Hartleys F-Critical for 5%
##### If-then Conditional for bracketing p-value of Hartleys test.
if($fsamh < $M1->element($rw, 1)){
$pp = "(p > 0.20)";
} elsif(($M1->element($rw, 1) < $fsamh) && ($fsamh < $M1->element($rw, 2)) ) {
$pp = "(0.10 < p < 0.20)";
} elsif(($M1->element($rw, 2) < $fsamh) && ($fsamh < $M1->element($rw, 3)) ) {
$pp = "(0.05 < p < 0.10)";
} elsif(($M1->element($rw, 3) < $fsamh) && ($fsamh < $M1->element($rw, 4)) ) {
$pp = "(0.02 < p < 0.05)";
} elsif(($M1->element($rw, 4) < $fsamh) && ($fsamh < $M1->element($rw, 5)) ) {
$pp = "(0.01 < p < 0.02)";
} elsif(($M1->element($rw, 5) < $fsamh) && ($fsamh < $M1->element($rw, 6)) ) {
$pp = "(0.001 < p < 0.01)";
} else{
$pp = "(p < 0.001)";
}
$popup9 = PopUp(
["??", '<', '>', '=', '< or =', '> or ='], '<');
$popup99 = PopUp(
["??", '<', '>', '=', '< or =', '> or ='], '<');
$popup19 = PopUp(
["??", '<', '>', '=', '< or =', '> or ='], '>');
$popupph = PopUp(
["which bracketed p-value?",
"(p > 0.40)", "(p > 0.20)","(0.20 < p < 0.40)","(0.10 < p < 0.20)", "(0.05 < p < 0.10)", "(0.025 < p < 0.05)", "(0.02 < p < 0.05)", "(0.01 < p < 0.025)","(0.01 < p < 0.02)", "(0.005 < p < 0.01)", "(0.001 < p < 0.01)", "(0.0001 < p < 0.001)", "(p < 0.01)", "(p < 0.001)", "(p < 0.0001)"], $pp );
#### this Should hold $pp as an answer above instead of "(p > 0.20)" ??
$popup29 = PopUp(
["??", '<', '>', '=', '< or =', '> or ='], '>');
$popup10 = PopUp(
["alpha", '0.20','0.10', '0.05', '0.02', '0.01', '0.001', '0.0001'], '0.05');
$popup11 = PopUp(
["??", 'all met, we can proceed', 'not met, we can not proceed', 'mostly met, we can proceed'], 'all met, we can proceed');
## IF needed and array sequence for Hartleys F test:
$fr = list_random(0, 1, 2, 3, 4, 5, 6); ## permits random selections of a specified range.
@falfa = ( '0.20','0.10', '0.05','0.02', '0.01', '0.001', '0.0001');
@falfap = ( '20%','10%', '5%','2%', '1%', '0.1%', '0.01%');
### Declaration of Variables: Step 2 ####
$popup3 = PopUp(
["Choose:", 'x-bar-i', 'mu-i', 'x-tilde-i', 'eta-i'], 'mu-i');
$popup4 = PopUp(
["Choose:", 'mean', 'median','standard deviation of', 'proportion of'], 'mean');
### Declaration of Hypothesis: Step 3 ####
$popup30 = PopUp(
["??", 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J'], 'D');
$popup31 = PopUp(
["??", 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J'], 'C');
$r = list_random(0, 1, 2, 3, 4, 5, 6); ## permits random selections of a specified range.
@alfa = ( '0.20','0.10', '0.05','0.02', '0.01', '0.001', '0.0001');
@alfap = ( '20%','10%', '5%','2%', '1%', '0.1%', '0.01%');
$alfp = "$alfap[$r]";
$LOS =Compute("100*$alfa[$r]");
$poplos = PopUp(
["alpha", '0.40', '0.20','0.10', '0.05','0.025', '0.02', '0.01', '0.001', '0.0001'], $alfa[$r]);
### Calculate values for ANOVA Table: Step 4
$h1=0;
foreach my $i (0..3) {
$sm1 =Compute("$h1 + $nr[$i]"); ## Summing all sample sizes
$h1 = $sm1;
}
$h2=0;
foreach my $i (0..3) {
$sm2 =Compute("$h2 + $nr[$i]*$xr[$i]"); ## Summing all n*xbars
$h2 = $sm2;
}
$gm2 =Compute("$sm2/$sm1"); ## the grand mean
$h3=0;
foreach my $i (0..3) {
$sm3 =Compute("$h3 + $nr[$i]*($xr[$i]-$gm2)**2"); ## Summing to ssb
$h3 = $sm3;
}
$h4=0;
foreach my $i (0..3) {
$sm4 =Compute("$h4 + ($nr[$i]-1)*($sr[$i])**2"); ## Summing to SSW
$h4 = $sm4;
}
$ssb=Compute("$sm3");
#$ssw =Compute("$sm4");
$ssw2 =Compute("$sm4");
$ssw1 =sprintf("%0.1f",$ssw2);
#$ssw =Compute("$ssw1");
$ssw = Compute($ssw1)->with(
tolType => 'relative',
tolerance => .005,
);
#$sst = Compute("$ssb+$ssw");
$sst = Compute("$ssb+$ssw")->with(
tolType => 'relative',
tolerance => .001,
);
$dfb = Compute("3");
$dfw = Compute("$sm1-4");
$dft = Compute("$dfb+$dfw");
$msb = Compute("$ssb/$dfb");
#$msw = Compute("$ssw/$dfw");
$msw2 = Compute("$ssw/$dfw");
$msw1 = sprintf("%0.3f",$msw2);
$msw = Compute("$msw1");
#$fsam = Compute("$msb/$msw");
$fsam = Compute("$msb/$msw")-> with(
tolType => 'absolute',
tolerance => .05, ); ## Wider tolerance x5 to permit some round off errors...
### ### A 2x7 matrix to find f-critical and bracket -p for the ANOVA test. ####
$M2 = Matrix([1.58, 2.14, 2.70, 3.43, 3.98, 5.86, 7.79], [1.57, 2.12, 2.67, 3.38, 3.92, 5.73, 7.57]);
if(($dfw >= 100) &&($dfw < 140)){
$ra =1;
@fcrit =('1.58','2.14', '2.70', '3.43', '3.98', '5.86', '7.79');
} else{
$ra =2;
@fcrit =('1.57','2.12', '2.67', '3.38', '3.92', '5.73', '7.57');
}
@finf =('1.55','2.08', '2.60', '3.28', '3.78', '5.425', '7.04');
$fin = Compute("$finf[$r]");
$fcrt =Compute("$fcrit[$r]");
if($fsam < $M2->element($ra, 1)){
$pa = "(p > 0.20)";
} elsif(($M2->element($ra,1) < $fsam) && ($fsam < $M2->element($ra,2)) ) {
$pa = "(0.10 < p < 0.20)";
} elsif(($M2->element($ra,2) < $fsam) && ($fsam < $M2->element($ra,3)) ) {
$pa = "(0.05 < p < 0.10)";
} elsif(($M2->element($ra,3) < $fsam) && ($fsam < $M2->element($ra,4)) ) {
$pa = "(0.02 < p < 0.05)";
} elsif(($M2->element($ra,4) < $fsam) && ($fsam < $M2->element($ra,5)) ) {
$pa = "(0.01 < p < 0.02)";
} elsif(($M2->element($ra,5) < $fsam) && ($fsam < $M2->element($ra,6)) ) {
$pa = "(0.001 < p < 0.01)";
} elsif(($M2->element($ra,6) < $fsam) && ($fsam < $M2->element($ra,7)) ) {
$pa = "(0.0001 < p < 0.001)";
} else{
$pa = "(p < 0.0001)";
}
$pop21 = PopUp(
["which bracketed p-value?",
"(p > 0.40)", "(p > 0.20)","(0.20 < p < 0.40)","(0.10 < p < 0.20)", "(0.05 < p < 0.10)", "(0.025 < p < 0.05)", "(0.02 < p < 0.05)", "(0.01 < p < 0.025)","(0.01 < p < 0.02)", "(0.005 < p < 0.01)", "(0.001 < p < 0.01)", "(0.0005 < p < 0.005)", "(p < 0.001)", "(p < 0.0001)"], "(p < 0.0001)" );
##### But $pa should be used above when ready....
#### Write a Statistical conclusion to the ANOVA hypothesis.
$popup40 = PopUp(
["??", '40%','20%','10%', '5%','2.5%', '2%', '1%', '0.1%', '0.01%'], $alfp);
$popup41 = PopUp(
["Choose:", 'Reject', 'Do Not Reject'], 'Reject');
@fcrit =('1.57','2.12', '2.67', '3.38', '3.92', '5.73', '7.57');
@finf =('1.55','2.08', '2.60', '3.28', '3.78', '5.42', '7.04');
$fcrt =Compute("$fcrit[$r]");
$fin = Compute("$finf[$r]");
$popup33 = PopUp(
["??", '<', '>', '=', '< or =', '> or ='], '>');
$popup34 = PopUp(
["??", '<', '>', '=', '< or =', '> or ='], '>');
$popup44 = PopUp(
["??", '<', '>'], '<');
$popup45 = PopUp(
["which bracketed p-value?",
"(p > 0.40)", "(p > 0.20)","(0.20 < p < 0.40)","(0.10 < p < 0.20)", "(0.05 < p < 0.10)", "(0.025 < p < 0.05)", "(0.02 < p < 0.05)", "(0.01 < p < 0.025)","(0.01 < p < 0.02)", "(0.005 < p < 0.01)", "(0.001 < p < 0.01)", "(0.0005 < p < 0.005)", "(p < 0.001)", "(p < 0.0001)"], "(p < 0.0001)" );
$popup46 = PopUp(
["??", '<', '>'], '<');
$popup47 = PopUp(
["alpha", '0.40', '0.20','0.10', '0.05','0.025', '0.02', '0.01', '0.001', '0.0001'], $alfa[$r] );
$popup48 = PopUp(
["Choose:", 'varies', 'does not vary'], 'varies');
#### Begin Problem...
#### M3 is a 30 x 7 Matrix of wrong critical values that students are likely
#### to submit as answers for Hartley's F-max Critical Value.
#### Flagging these entries will prompt the
#### student of the type of error made. Note that the F-max table will have
#### duplicate values on the last row as it has one less column than
#### the ANOVA f-critical values and this is the "mesh" for this case.
#### fcrtw1: Row 1 = used df(3,120), should be df =4 for F-max critical
#### Wrong F-max: df = (3, 20:28) at rows 2-10,
#### Wrong F-Critical df = (3, 20:28) at rows 11-19,
#### Wrong F-Critical (4, 20:28) at rows 20-28,
#### Wrong F-Critical Row 29 = df(3,140), Row 30 = df(4,140)
$M3 = Matrix([1.37, 1.46, 1.54, 1.64, 1.71, 1.94, 1.94], [1.63, 1.88, 2.13, 2.46, 2.72, 3.65, 3.65], [2.19, 2.57, 2.95, 3.48, 3.90, 5.50, 5.50], [2.15, 2.51, 2.87, 3.37, 3.76, 5.25, 5.25],[2.11, 2.45, 2.80, 3.27, 3.64, 5.03, 5.03], [2.07, 2.40, 2.73, 3.18, 3.53, 4.84, 4.84], [2.04, 2.35, 2.67, 3.10, 3.43, 4.66, 4.66], [2.01, 2.31, 2.61, 3.02, 3.34, 4.51, 4.51], [1.98, 2.27, 2.56, 2.95, 3.26, 4.36, 4.36], [1.95, 2.24, 2.52, 2.89, 3.18, 4.23, 4.23], [1.93, 2.20, 2.47, 2.83, 3.11, 4.12, 4.12], [1.70, 2.38, 3.10, 4.11, 4.94, 8.10, 12.05], [1.69, 2.36, 3.07, 4.07, 4.87, 7.94, 11.73], [1.68, 2.35, 3.05, 4.03, 4.82, 7.80, 11.44], [1.68, 2.34, 3.03, 3.99, 4.76, 7.67, 11.19], [1.67, 2.33, 3.01, 3.96, 4.72, 7.55, 10.96], [1.66, 2.32, 2.99, 3.93, 4.68, 7.45, 10.76], [1.66, 2.31, 2.98, 3.90, 4.64, 7.36, 10.58], [1.65, 2.30, 2.96, 3.87, 4.60, 7.27, 10.41], [1.65, 2.29, 2.95, 3.85, 4.57, 7.19, 10.26], [1.65, 2.25, 2.87, 3.73, 4.43, 7.10, 10.41], [1.65, 2.23, 2.84, 3.69, 4.37, 6.95, 10.12], [1.64, 2.22, 2.82, 3.65, 4.31, 6.81, 9.86], [1.63, 2.21, 2.80, 3.61, 4.26, 6.70, 9.63], [1.63, 2.19, 2.78, 3.58, 4.22, 6.59, 9.42], [1.62, 2.18, 2.76, 3.55, 4.18, 6.49, 9.24], [1.62, 2.17, 2.74, 3.52, 4.14, 6.41, 9.07],[1.61, 2.17, 2.73, 3.50, 4.11, 6.33, 8.92], [1.61, 2.16, 2.71, 3.47, 4.07, 6.25, 8.79], [1.57, 2.12, 2.67, 3.38, 3.92, 5.73, 7.57], [1.52, 1.99, 2.44, 3.02, 3.46, 4.90, 6.35]);
$fcrtw1 = $M3->element(1, 3); ##F-max: k=3, dfw = 120, alpha = 5%
$fcrtw2 = $M3->element(1, $rw-1); ##F-max: k=3, dfw = 120, alpha = a%
$fcrtw3 = $M3->element($rw+2, 3); ##F-max: k=3, dfw = good, alpha = 5%
$fcrtw4 = $M3->element($rw+2, $rw-1); ##F-max: k=3, dfw = good, alpha = a%
$fcrtw5 = $M3->element($rw+11, 3); ##F-Crit: k=3, dfw = good, alpha = 5%
$fcrtw6 = $M3->element($rw+11, $rw-1); ##F-Crit: k=3, dfw = good, alpha = a%
$fcrtw7 = $M3->element($rw+20, 3); ##F-Crit: k=4, dfw = good, alpha = 5%
$fcrtw8 = $M3->element($rw+20, $rw-1); ##F-Crit: k=4, dfw = good, alpha = a%
$fcrtw9 = $M3->element(30, 3); ##F-Crit: k=3, dfw = 140, alpha = 5%
$fcrtw10 = $M3->element(30, $rw-1); ##F-Crit: k=3, dfw = 140, alpha = a%
$fcrtw11 = $M3->element(31, 3); ##F-Crit: k=4, dfw = 140, alpha = 5%
$fcrtw12 = $M3->element(31, $rw-1); ##F-Crit: k=4, dfw = 140, alpha = a%
BEGIN_PGML
*Drawn from Lecture Notes: Week 11 Day 2, Week 12 Day 2, and Week 12 Day 3.*
[@
DataTable(
[
["$BBOLD 25.3) $EBOLD The bright yellow head of the adult male Egyptian vulture requires carotenoid pigments. The brighter the yellow pigment, the more likely that the male will attract a mate. These pigments can not be synthesized by the vultures, so they must be obtained through their diet. Unfortunately, carotenoids are scarce in rotten flesh and bones, but they are readily available in the dung of ungulates. Which is why Egyptian vultures are frequently seen eating the droppings of cows, goats, and sheep in Spain, where they have been studied."," ",[" An Egyptian Vulture, $BITALIC Neophron percnopterus $EITALIC".$BR.image( "Yellowhead.png", width=>743, height=>382, tex_size=>700 ).$BR."image by San Diego Zoo Safari Park" ]]],
caption => "Does the Carotenoid Pigment of the Egyptian Vulture Vary by Region?",
midrules=>0,
align => "p{3.5in} p{0.1in} p{4.2in}"
);
@]***
Ungulates are common in some areas but not in others. Could the variation in yellow pigment coloring of the Egyptian vulture be due to a variation in the availability in ungulate dung? Negro et al. (2002) measured plasma carotenoids in wild Egyptian vultures caught at four regions in Spain as part of a study to determine the causes of variation among the sites in carotenoid availability. Their data (altered slightly for randomization and preliminary checks) is summarized in the table below. Use a one way ANOVA hypothesis at a [$LOS]% LOS with preliminary checks to determine if the mean serum pigment ([`\mu g/ml`]) of the Egyptian vulture is significantly different for the four selected regions in Spain.
* Spaniards have nicknamed the Egyptian vulture [`mo\tilde n iguero`] which politely translates to "dung eater".
*Source: Whitlock and Shluter, "The Analysis of Biological Data", page 490.
*image source from http://www.sdzsafaripark.org/wildlife/egyptian-vulture: [@ htmlLink( "http://www.sdzsafaripark.org/wildlife/egyptian-vulture","Egyptian vulture" ) @]***
[@
DataTable(
[
[["Site ", headerrow => 1],"N","\\(\\bar x\\) plasma carotenoids $BR concentration (\\(\\mu g/ml\\))", "Standard $BR deviation",],
[["$jnn" ], "$jn", "$jx", "$js"],
],
caption => " ",
midrules => 1,
align => "|p{0.3in}|p{0.3in}|p{1.8in}|p{0.8in}|",
);
@]***
*25.3) Step 1a: Preliminary Checks*
* The data sets are collected from [$popup1->menu]* and random samples.
* With summarized data, we assume that all data sets [$popup2->menu]* a normality test by the Anderson-Darling normality test, as we are using mean values.
*25.3) Step 1b:* Check for Homoscedastity (equal variances):
[@
DataTable(
[
[["Because of unequal sample sizes we must first calculate a harmonic mean for the grouped sample size, \\(n^{\\prime}.\\) "]," ","\\(\\displaystyle{n^{\\prime} = \\frac{k}{\\frac{1}{n_1}+\\frac{1}{n_2}+...+\\frac{1}{n_k}}}\\) "],
],
caption => " ",
midrules => 0,
align => "p{3.8in}p{0.3in}p{3in}",
);
@]***
[`n'`] = [_____] Use at least second decimal accuracy
[`n'`] = [_____] Rounded up to the next integer for f-table use.
Establish the decision line for Hartley's Equal variance test. Recognize that this is NOT the decision line for the ANOVA test, rather it is the decision line for the preliminary check of equal variances, without which we can not proceed with the ANOVA test.
For Hartley's test: df = (k, [`n'`]-1) = [`\Large{(}`] [____] [`\Large{,}`][____] [`\Large{)}`]
[`\hspace{50pt}`] [$popup5->menu]* [`\hspace{120pt}`] [$popup6->menu]*
[@ image( "DecisionLine2.png", width=>690, height=>25, tex_size=>700, extra_html_tags=>'alt="A decision for the hypothesis on equal variances." ' ) @]***
[`\hspace{120pt} \Large{F_{critical} =}`] [____]
*25.3) Step 1c:* The statistical conclusion for Hartley's F test is:
At the [$popup7->menu]* LOS we [$popup8->menu]* the null hypothesis of [``\large{H_o }``], because:
[@
DataTable(
[
[" \\(\\large{F}\\)-Notational $BR Support: $BR $BR Numeric $BR Validation: "," \\(\\hspace{10pt}\\) \\(\\large{F_{sample}}\\) \\(\\hspace{2pt}\\) ".$popup9->menu." \\(\\hspace{2pt}\\) \\(\\large{F _{critical}}\\) $BR $BR ".$fsamh->ans_rule(5)." ".$popup99->menu. " ".$fcrth->ans_rule(5). " "],
],
caption => " ",
midrules=>0,
align => "p{1.2in}p{7in}"
);
@]***
[@
DataTable(
[
["p-Notational $BR Support: $BR $BR Numeric $BR Validation: "," \\(\\hspace{115pt}\\) \\(\\Large{p} \\hspace{2pt}\\) ".$popup19->menu."\\(\\hspace{2pt} \\Large{\\alpha}\\) $BR $BR ".$popupph->menu."".$popup29->menu."".$popup10->menu."" ],
],
caption => " ",
midrules=>0,
align => "p{1.2in}p{7in}"
);
@]***
With the preliminary checks of independent and random samples, a normal distribution and equal variances, [$popup11->menu]* with a one-way ANOVA test.
*25.3) Step 2:* Declare the variables for this hypothesis test:
[@
DataTable(
[
["$BBOLD Note! $EBOLD Because of the limitations in software most special characters cannot be included in a 'pop-up' answer format and yet they are needed for the hypothesis formation. The pop-up selections will be in the text-form for the special characters embedded within the pop-up answer. Use the table at the right as a guide if needed."," ",[image( "musubi.png", width=>189, height=>198, tex_size=>700 )],[image( "muby4.png", width=>258, height=>266, tex_size=>700 ) ] ]
],
caption => "English text equivalence for the Variable and Hypothesis Options: ",
midrules=>0,
align => "p{2.5in} p{0.1in} p{2in}p{2.5in}"
);
@]***
*25.3) Step 2:* Declare the variables for this hypothesis test:
[$popup3->menu]* = The [$popup4->menu]* plasma concentration of carotenoids in ([`\mu g/ml`]) for a wild Egyptian vulture from the [`i^{th}`] region in Spain.
.
*25.3) Step 3)* Choose the correct hypothesis statement to test the claim that the mean plasma concentration of carotenoids in ([`\mu g/ml`]) for a wild Egyptian vulture varies by region. Test the hypothesis at a [$LOS]% LOS.
[``\Large{H_o:}``] [$popup30->menu]*
[``\Large{H_a:}``] [$popup31->menu]*
[``\Large{\alpha =}``] [$poplos->menu]*
*25.3) Step 4)* Complete the partially filled ANOVA table as an aid in forming the conclusion for the ANOVA hypothesis.
[@
DataTable(
[
[["Source ", headerrow => 1],"Sum of Squares $BR (SS)", "Degrees of $BR freedom: df","Mean Squares $BR (MS)","F-sample"],
[["Between $BR Groups"], "SSB = $ssb", "\\(df_b\\) =".$dfb->ans_rule(1)."", "MSB =".$msb->ans_rule(4)."", "\\(F_{Sample}\\) =".$fsam->ans_rule(4).""],
[["Within $BR Groups"], "SSW = $ssw", "\\(df_w\\) =".$dfw->ans_rule(1)."", "MSW =".$msw->ans_rule(4)."", "$BBOLD Bracketed p-value: $EBOLD"],
[["Total"], "SST =".$sst->ans_rule(4)."", "\\(df_t\\) =".$dft->ans_rule(1)."", "", " ".$pop21->menu.""],
],
caption => "ANOVA TABLE ",
midrules => 1,
align => "|p{0.6in}|p{1.3in}|p{1.1in}||p{1.4in}|p{2in}|",
);
@]***
*25.3), Step 5)* Write a statistical conclusion for the ANOVA hypothesis.
At the [$popup40->menu]* LOS we [$popup41->menu]* the null hypothesis of [``\large{H_o }``], because:
[@
DataTable(
[
[" df and \\(\\large{F}\\) $BR Notation $BR Support: $BR $BR Numeric $BR Validation: "," \\(\\hspace{2pt}\\) \\(df = (df_B , df_W\\)) = \\(\\large{(}\\) ".$dfb->ans_rule(1)."\\(\\large{,}\\)".$dfw->ans_rule(1)."\\(\\large{)}\\) $BR $BR \\(\\hspace{11pt}\\) \\(\\large{F_{sample}}\\) \\(\\hspace{1pt}\\) ".$popup33->menu." \\(\\hspace{1pt}\\) \\(\\large{F_{critical}}\\) $BR $BR ".$fsam->ans_rule(5)." ".$popup34->menu."".$fcrt->ans_rule(5)."" ],
],
caption => " ",
midrules=>0,
align => "p{1.2in}p{7in}"
);
@]***
[@
DataTable(
[
["p-Notational $BR Support: $BR $BR Numeric $BR Validation: "," \\(\\hspace{65pt}\\) \\(\\Large{p} \\hspace{2pt}\\) ".$popup44->menu."\\(\\hspace{2pt} \\Large{\\alpha}\\) $BR $BR \\(\\Large{p} = \\hspace{2pt}\\)".$popup45->menu."".$popup46->menu."".$popup47->menu."" ],
],
caption => " ",
midrules=>0,
align => "p{1.2in}p{7in}"
);
@]***
*25.3), Step 6)* Write an English sentence conclusion.
The evidence supports the case that mean plasma carotenoid concentration in [`\mu g/ml`] of Egyptian vultures [$popup48->menu]* according to region.
END_PGML
#Adapted weighted answers values:
## Problems 25.3 ##
##Preliminary checks:
WEIGHTED_ANS( ($popup1)->cmp, 1 );
WEIGHTED_ANS( ($popup2)->cmp, 1 );
## Check for Equal Variances:
WEIGHTED_ANS( ($nprime)->cmp, 5 );
WEIGHTED_ANS( ($npc)->cmp, 1 );
WEIGHTED_ANS( ($dfhn)->cmp, 2 );
WEIGHTED_ANS( ($dfhd)->cmp, 2 );
WEIGHTED_ANS( ($popup5)->cmp, 1 );
WEIGHTED_ANS( ($popup6)->cmp, 1 );
WEIGHTED_ANS( $fcrth->cmp() ->withPostFilter(AnswerHints(
$fcrth => "Yes!",
$fcrtw1 => "Wrong F-max Table, and both df are wrong: dfn = number of treatments, k, you used df = k - 1. And dfd = n' -1, but you summed data and subtracted the number of groups. You forgot the harmonic mean.",
$fcrtw2 => "Wrong F-max Table, and both df are wrong: dfn = number of treatments, k, you used df = k - 1. And dfd = n' -1, but you summed data and subtracted the number of groups. You forgot the harmonic mean. Also you are using the wrong alpha value.",
$fcrtw3 => "Wrong F-max Table. Your df is wrong: dfn = number of treatments, k, but you used df = k - 1.",
$fcrtw3 => "Wrong F-max Table. Your df is wrong: dfn = number of treatments, k, but you used df = k - 1. Also you are using the wrong alpha value.",
$fcrtw5 => "Wrong Table! You are using the ANOVA F-critical table but the test for equal variances uses the F-max table. And your df are wrong: dfn = number of treatments, k, while you used df = k - 1.",
$fcrtw6 => "Wrong Table! You are using the ANOVA F-critical table but the test for equal variances uses the F-max table. And your df are wrong: dfn = number of treatments, k, while you used df = k - 1. Also you have the wrong alpha value. Get it together!",
$fcrtw7 => "Wrong Table! You are using the ANOVA F-critical table but the test for equal variances uses the F-max table.",
$fcrtw8 => "Wrong Table! You are using the ANOVA F-critical table but the test for equal variances uses the F-max table. And you are using the wrong alpha value.",
$fcrtw9 => "Wrong Table! You are using the ANOVA F-critical table but the test for equal variances uses the F-max table. Also both df values are wrong and you did not use the harmonice mean. Try checking out the example problem in Lecture Week 12 day 3.",
$fcrtw10 => "Wrong Table! You are using the ANOVA F-critical table but the test for equal variances uses the F-max table. Also both your df values are wrong. You did not use the harmonic mean, n'-1 to find it. And your alpha value is wrong. Try checking out the example problem in Lecture Week 12 day 3.",
$fcrtw11 => "Wrong Table! You are using the ANOVA F-critical table but the test for equal variances uses the F-max table. Also your 2nd df value is wrong. You summed up data point rather than use the harmonic mean, n'-1 to find it. Try checking out the example problem in Lecture Week 12 day 3.",
$fcrtw12 => "Wrong Table! You are using the ANOVA F-critical table but the test for equal variances uses the F-max table. Also your 2nd df value is wrong. You summed up data point rather than use the harmonic mean, n'-1 to find it. And your alpha value is wrong. Try checking out the example problem in Lecture Week 12 day 3.",
)),3 );
WEIGHTED_ANS( ($popup7)->cmp, 1 );
WEIGHTED_ANS( ($popup8)->cmp, 1 );
WEIGHTED_ANS( ($popup9)->cmp, 1 );
WEIGHTED_ANS( ($fsamh)->cmp, 7 );
WEIGHTED_ANS( ($popup99)->cmp, 1 );
WEIGHTED_ANS( ($fcrth)->cmp, 5 );
WEIGHTED_ANS( ($popup19)->cmp, 1 );
WEIGHTED_ANS( ($popupph)->cmp, 4 );
WEIGHTED_ANS( ($popup29)->cmp, 1 );
WEIGHTED_ANS( ($popup10)->cmp, 2 );
WEIGHTED_ANS( ($popup11)->cmp, 1 );
## Declare Variables:
WEIGHTED_ANS( ($popup3)->cmp, 2 );
WEIGHTED_ANS( ($popup4)->cmp, 2 );
##Declare Hypothesis and LOS:
WEIGHTED_ANS( ($popup30)->cmp, 2 );
WEIGHTED_ANS( ($popup31)->cmp, 2 );
WEIGHTED_ANS( ($poplos)->cmp, 2 );
### ANOVA Table Entries:
#WEIGHTED_ANS( ($ssb)->cmp, 2 );
#WEIGHTED_ANS( ($ssw)->cmp, 2 );
WEIGHTED_ANS( ($dfb)->cmp, 2 );
WEIGHTED_ANS( ($msb)->cmp, 3 );
WEIGHTED_ANS( ($fsam)->cmp, 4 );
WEIGHTED_ANS( ($dfw)->cmp, 3 );
WEIGHTED_ANS( ($msw)->cmp, 3 );
WEIGHTED_ANS( ($sst)->cmp, 2 );
WEIGHTED_ANS( ($dft)->cmp, 1 );
WEIGHTED_ANS( ($pop21)->cmp, 2 );
##### ANOVA Statistical Conclusion: Step 5
WEIGHTED_ANS( ($popup40)->cmp, 2 );
WEIGHTED_ANS( ($popup41)->cmp, 2 );
WEIGHTED_ANS( ($dfb)->cmp, 2 );
WEIGHTED_ANS( ($dfw)->cmp, 2 );
WEIGHTED_ANS( ($popup33)->cmp, 1 );
WEIGHTED_ANS( ($fsam)->cmp, 3 );
WEIGHTED_ANS( ($popup34)->cmp, 1 );
WEIGHTED_ANS( $fcrt->cmp() ->withPostFilter(AnswerHints(
$fcrt => "Yes!",
$fin => "No, We should never round a df up to infinity",
$fcrtw11 => "Wrong Table! You are using the ANOVA F-critical table (yes) but your first df value is wrong. You need to subtract one from the number of groups (k-1) to find it. Also your alpha is possibly wrong. Try checking out the example problem in Lecture Week 12 day 3.",
$fcrtw12 => "Wrong Table! You are using the ANOVA F-critical table but your first df value is wrong. You need to subtract one from the number of groups (k-1) to find it. Try checking out the example problem in Lecture Week 12 day 3.",
$fcrth => "Wrong Table! That is the F-max critical value used for the equal variance test. You should be using the ANOVA F-critical table but your df value is wrong. You need to subtract one from the number of groups (k-1) to find it. Try checking out the example problem in Lecture Week 12 day 3. Also your alpha is likely wrong.",
$fcrtw1 => "Wrong Table! You are using the F-Max table and but should be using F-critical table for ANOVAs. Also you are using the wrong alpha value.",
$fcrtw2 => "Wrong Table! You are using the F-Max table and but should be using F-critical table for ANOVAs.",
$fcrtw3 => "Wrong Table! You are using the F-Max table and but should be using F-critical table for ANOVAs. Also your 2nd df and alpha values are wrong.",
$fcrtw4 => "Wrong Table! You are using the F-Max table and but should be using F-critical table for ANOVAs. Also your 2nd df value is wrong.",
$fcrtw5 => "Wrong 2nd df and possibly alpha! It seems like you used the harmonic mean to find your 2nd df when that method is only used for the equal variance test, not ANOVAs.",
$fcrtw6 => "Wrong 2nd df! It seems like you used the harmonic mean to find your 2nd df when that method is only used for the equal variance test, not ANOVAs.",
$fcrtw7 => "Both df values and possibly alpha are wrong! It seems like you used the harmonic mean to find your 2nd df when that method is only used for the equal variance test, not ANOVAs.",
$fcrtw8 => "Both df values are wrong! It seems like you used the harmonic mean to find your 2nd df when that method is only used for the equal variance test, not ANOVAs.",
)),4 );
WEIGHTED_ANS( ($popup44)->cmp, 1 );
WEIGHTED_ANS( ($popup45)->cmp, 3 );
WEIGHTED_ANS( ($popup46)->cmp, 1 );
WEIGHTED_ANS( ($popup47)->cmp, 1 );
WEIGHTED_ANS( ($popup48)->cmp, 1 );
###############################
BEGIN_PGML_SOLUTION
*25.2) Step 1a: Preliminary Checks*
* The data sets are collected from [$popup1] and random samples.
* With summarized data, we assume that all data sets [$popup2] a normality test by the Anderson-Darling normality test, as we are using mean values.
*25.2) Step 1b:* Check for Homoscedastity (equal variances):
[@
DataTable(
[
[["Site ", headerrow => 1],"N","\\(\\bar x\\) plasma carotenoids $BR concentration (\\(\\mu g/ml\\))", "Standard $BR deviation",],
[["$jnn" ], "$jn", "$jx", "$js"],
],
caption => " ",
midrules => 1,
align => "|p{0.3in}|p{0.3in}|p{1.8in}|p{0.8in}|",
);
@]***
[@
DataTable(
[
[["Because of unequal sample sizes we must first calculate a harmonic mean for the grouped sample size, \\(n^{\\prime}.\\) $BR $BR Then \\(\\quad \\displaystyle{n^{\\prime} = \\frac{k}{\\frac{1}{n_1}+\\frac{1}{n_2}+...+\\frac{1}{n_k}} }\\) $BR $BR \\(\\displaystyle{n^{\\prime} = \\frac{4}{\\frac{1}{$nr[0]}+\\frac{1}{$nr[1]}+\\frac{1}{$nr[2]} +\\frac{1}{$nr[3]}}}\\) $BR $BR \\( n^{\\prime} = $nprime \\) $BR $BR The degrees of freedom for the equal variance test is \\( df = n^{\\prime} \\text{ (rounded up) } -1 \\) $BR $BR \\(df = $npc - 1 = $npf\\) $BR $BR Now we can find the F-critical value for Hartley's F-max test for Equal variances by referencing the F-max table with 4 treatments: (at the right) $BR $BR With \\(k = 4 \\) groups (treatments) and \\(df = $npf \\) and the standard LOS of 5% we find the \\(F_{critical} = F_{4, $npf} = $fcrth \\) $BR $BR Next we calculate the F-sample value for the F-max test: $BR $BR
\\(F_{sample} = \\frac{(sd_{max})^2}{(sd_{min})^2} = \\frac{($mxsd)^2}{($mnsd)^2} = $fsamh \\)"], " ",image( "Fmax4.png", width=>313, height=>632, tex_size=>700, extra_html_tags=>'alt="An image of the F-max table for F-critical values for degrees of freedom of 4." ' ) ],
],
caption => " ",
midrules => 0,
align => "p{3.8in}p{0.3in}p{2.3in}",
);
@]***
Establish the decision line for Hartley's Equal variance test. Recognize that this is NOT the decision line for the ANOVA test, rather it is the decision line for the preliminary check of equal variances, without which we can not proceed with the ANOVA test.
For Hartley's test: df = (k, [`n'`]-1) = [``\large{(4, [$npf] )}``]
[`\hspace{50pt}`] *Do Not Reject Ho* [`\hspace{120pt}`] *Reject Ho*
[@ image( "DecisionLine2.png", width=>690, height=>25, tex_size=>700, extra_html_tags=>'alt="A decision for the hypothesis on equal variances." ' )@]***
[``\hspace{160pt} \large{F_{4, [$npf] } = [$fcrth]}``]
*25.3) Step 1c:* The statistical conclusion for Hartley's F test is:
At the [$popup7] LOS we [$popup8] the null hypothesis of [``\large{H_o }``], because:
[@
DataTable(
[
[" \\(\\large{F}\\)-Notational $BR Support: $BR $BR Numeric $BR Validation: "," \\(\\hspace{10pt} \\large{F_{sample}} \\hspace{2pt} $popup9 \\hspace{2pt} \\large{F _{critical}}\\) $BR $BR \\( \\hspace{10pt} $fsamh $popup99 $fcrth \\) "],
],
caption => " ",
midrules=>0,
align => "p{1.2in}p{7in}"
);
@]***
[@
DataTable(
[
["p-Notational $BR Support: $BR $BR Numeric $BR Validation: "," \\(\\hspace{30pt}\\large{p} \\hspace{2pt} $popup19 \\hspace{2pt} \\large{\\alpha}\\) $BR $BR \\( $popupph $popup29 $popup10 \\)" ],
],
caption => " ",
midrules=>0,
align => "p{1.2in}p{7in}"
);
@]***
With the preliminary checks of independent and random samples, a normal distribution and equal variances, [$popup11] with a one-way ANOVA test.
*25.3) Step 2:* Declare the variables for this hypothesis test:
[``\mu_i``] = The *mean* plasma concentration of carotenoids in ([`\mu g/ml`]) for a wild Egyptian vulture from the [`i^{th}`] region in Spain.
*25.3) Step 3)* Choose the correct hypothesis statement to test the claim that the mean emission rate in (ng/hour) for a potato plant varies depending upon the type of attacking insect. Test the hypothesis at a [$LOS]% LOS.
[``\large{H_o \hspace{-3pt}: \hspace{3pt} \mu_1 = \mu_2 = \mu_3 = \mu_4 }``]
[``\large{H_a \hspace{-3pt}: \hspace{3pt} }``] *At least one mean is not equal*
[``\large{\alpha = [$poplos]}``]
*25.3) Step 4)* Complete the partially filled ANOVA table as an aid in forming the conclusion for the ANOVA hypothesis.
[@
DataTable(
[
[["Source ", headerrow => 1],"Sum of Squares $BR (SS)", "Degrees of $BR freedom: df","Mean Squares $BR (MS)","F-sample"],
[["Between $BR Groups"], "SSB = $ssb", "\\(df_b\\) = $dfb ", "MSB = $msb ", "\\(F_{Sample}\\) = $fsam "],
[["Within $BR Groups"], "SSW = $ssw" , "\\(df_w\\) = $dfw ", "MSW = $msw" , "$BBOLD Bracketed p-value: $EBOLD"],
[["Total"], "SST = $sst ", "\\(df_t\\) = $dft ", "", " $pop21 "],
],
caption => "ANOVA TABLE ",
midrules => 1,
align => "|p{0.6in}|p{1.3in}|p{1.1in}||p{1.4in}|p{2in}|",
);
@]***
*25.3), Step 5)* Write a statistical conclusion for the ANOVA hypothesis.
At the [$popup40] LOS we [$popup41] the null hypothesis of [``\large{H_o }``], because:
[@
DataTable(
[
[" df and \\(\\large{F}\\) $BR Notation $BR Support: $BR $BR Numeric $BR Validation: "," \\(\\hspace{2pt} df = (df_B , df_W ) = ( $dfb , \\, $dfw ) \\) $BR $BR \\( \\large{F_{sample}} $popup33 \\large{F_{critical}}\\) $BR $BR \\( $fsam $popup34 $fcrt \\)" ],
],
caption => " ",
midrules=>0,
align => "p{1.2in}p{7in}"
);
@]***
[@
DataTable(
[
["p-Notational $BR Support: $BR $BR Numeric $BR Validation: "," \\(\\hspace{20pt} \\large{p} \\hspace{2pt} $popup44 \\hspace{2pt} \\large{\\alpha}\\) $BR $BR \\(\\hspace{2pt} $popup45 $popup46 $popup47 \\)" ],
],
caption => " ",
midrules=>0,
align => "p{1.2in}p{7in}"
);
@]***
*25.3), Step 6)* Write an English sentence conclusion.
The evidence supports the case that mean plasma carotenoid concentration in [`\mu g/ml`] of Egyptian vultures [$popup48] according to region.
END_PGML_SOLUTION
ENDDOCUMENT();