I am working on a problem where a student needs to simplify various radicals. I would like a student to be given sqrt(-48) and they would need to enter 4sqrt(3)i only, and not sqrt(48)i.
I may be overthinking this but I am attempting to use both LimitedRadical Context and Complex Context and I cannot seem to get it right. Here is the current code. Any ideas?
DOCUMENT();
loadMacros(
"PGstandard.pl",
"MathObjects.pl",
"PGML.pl",
"contextFraction.pl",
"contextLimitedRadical.pl",
"PGcourse.pl",
"parserRoot.pl",
"contextLimitedComplex.pl"
);
######################################
Context("Numeric");
$a1 = random(2,7,1);
$a2 = random(2,7,1);
$a3 = random(2,7,1);
$nsqa1 = -$a1*$a1;
$nsqa2 = -$a2*$a2;
$m2 = list_random(2,3);
$b = $nsqa2*$m2;
$nsqa3 = -$a3*$a3;
$m3 = list_random(4,5);
$c = $nsqa3*$m3;
Context("LimitedRadical");
$rad2 = Formula("$a2*sqrt($m2)");
$rad3 = Formula("$a3*sqrt($m3)");
Context("Complex");
$ans2 = Complex("$rad2 i");
$ans3 = Complex("$rad3 i");
Context("LimitedComplex-strict");
$ans1 = Complex("$a1 i");
BEGIN_PGML
Simplify the following expressions.
a. [`\sqrt{[$nsqa1]} = `][_______________]{$ans1}
b. [`\sqrt{[$b]} = `][_______________]{$ans2}
c. [`\sqrt{[$c]} = `][_______________]{$ans3}
END_PGML