Problem1
Jump to navigation
Jump to search
Prep Main Page > Web Conference 2 > Sample Problems > Problem 1
# DESCRIPTION # Sample problem for WeBWorK PREP workshop # Model problem: # Find the equation of the parabola through (0,1), (1,0) and (2,0). # WeBWorK problem written by Gavin LaRose, <glarose@umich.edu> # ENDDESCRIPTION DOCUMENT(); loadMacros( "PGstandard.pl", "PGchoicemacros.pl", "MathObjects.pl", ); ############################################################ # problem set-up Context("Numeric"); $showPartialCorrectAnswers = 0; # pick a y-intercept, and the two x-intercepts $yint = random(1,5,1); $xint1 = random(1,3,1); $xint2 = $xint1 + random(1,3,1); # the parabola is then $parab = Compute( "($yint/($xint1*$xint2))*(x-$xint1)*(x-$xint2)" ); ############################################################ # text TEXT(beginproblem()); Context()->texStrings; BEGIN_TEXT Find the equation of the parabola through the points \((0, $yint)\), \(($xint1, 0)\) and \(($xint2, 0)\). $PAR \(y = \) \{ $parab->ans_rule(25) \} END_TEXT Context()->normalStrings; ############################################################ # answer and solution ANS( $parab->cmp() ); Context()->texStrings; SOLUTION(EV3(<<'END_SOLUTION')); $PAR SOLUTION $PAR Because the \(x\)-intercepts of the parabola are \(x=$xint1\) and \(x=$xint2\), we know the parabola has the form \[ y = k (x - $xint1) (x - $xint2).\] To find \(k\), we plug in the given \(y\) intercept and solve: \( $yint = k (-$xint1) (-$xint2) \), so that \[ y = $parab. \] END_SOLUTION Context()->normalStrings; ENDDOCUMENT(); # end of problem ############################################################