Problem11
Jump to navigation
Jump to search
Prep Main Page > Web Conference 2 > Sample Problems > Problem 11
This is Library/Michigan/Chap2Sec1/Q17.pg
DOCUMENT(); loadMacros( "PG.pl", "PGbasicmacros.pl", "PGchoicemacros.pl", "PGanswermacros.pl", "PGauxiliaryFunctions.pl", "MathObjects.pl", "parserNumberWithUnits.pl", ); Context("Numeric"); ## Do NOT show partial correct answers $showPartialCorrectAnswers = 0; TEXT(beginproblem()); $a1 = random(0.3,0.5,0.05); $a2 = random(1.3,1.9,0.1); $b = ($a1-0)/0.2; $c = ($a2-$a1)/0.2; $v = ($b+$c)/2; Context()->texStrings; BEGIN_TEXT Consider a car whose position, \( s\), is given by the table $PAR $BCENTER \{begintable(7) \} \{row("\(t\) (s)" ,0,0.2,0.4,0.6,0.8,1.0) \} \{row("\(s\) (ft)",0,$a1,$a2,3.8,6.5,9.6) \} \{endtable()\} $ECENTER $PAR Find the average velocity over the interval \(0 \le t \le 0.2\). $BR average velocity = \{ ans_rule(8) \} (include \{ helpLink("units") \}) $PAR Estimate the velocity at \(t=0.2\). $BR velocity = \{ ans_rule(8) \} (include \{ helpLink("units") \}) END_TEXT Context()->normalStrings; ANS(NumberWithUnits( $b, "ft/s" )->cmp() ); $bval = NumberWithUnits( $b, "ft/s" ); $cval = NumberWithUnits( $c, "ft/s" ); $vval = NumberWithUnits( $v, "ft/s" ); ANS(NumberWithUnits( $v, "ft/s" )->cmp( checker=>sub { my ( $correct, $student, $ansHash ) = @_; if ( $student == $correct || $student == $cval || $student == $bval ) { return 1; } else { return 0; } } ) ); Context()->texStrings; SOLUTION(EV3(<<'END_SOLUTION')); $PAR SOLUTION $PAR The average velocity over the interval \(0 \le t \le 0.2\) is given by $PAR \(\frac{s(0.2)-s(0)}{0.2}=\frac{$a1}{0.2}=$b \) ft/s. $PAR The average velocity over the interval \(0.2 \le t \le 0.4\) is given by $PAR \(\frac{s(0.4)-s(0.2)}{0.2}=\frac{$a2-$a1}{0.2}=$c \) ft/s $PAR A reasonable estimate for the velocity at \(t=0.2\) is the average \(\frac{1}{2}\cdot ($b+$c) = $v\) ft/s. END_SOLUTION Context()->normalStrings; COMMENT('MathObject version'); ENDDOCUMENT();