Problem9
Jump to navigation
Jump to search
Prep Main Page > Web Conference 2 > Sample Problems > Problem 9
This is Library/Rochester/setLimitsRates5Continuity/S02.05.Continuity.PTP01.pg
DOCUMENT(); loadMacros( "PGbasicmacros.pl", "PGchoicemacros.pl", "PGanswermacros.pl", "PGgraphmacros.pl", "PGauxiliaryFunctions.pl", "extraAnswerEvaluators.pl" ); TEXT(beginproblem()); $showPartialCorrectAnswers = 1; $a=random(1,3,1); $b=non_zero_random(-3,0,1); $c=random(-3,2,1); $m1=non_zero_random(-1,1,0.5); $m2= - $m1; $m3=non_zero_random(-1,1,1); $m4=non_zero_random(-1,1,1); @slice = NchooseK(3,3); @colors = ("blue", "red", "green"); @sc = @colors[@slice]; #scrambled colors @sa = ('A','B','C')[@slice]; $f1 = FEQ("sin(10*(x+1)) + $b for x in [-2,-1) using color:$sc[0] and weight:2"); $f2 = FEQ("1 + $a for x in [-1,-1] using color=$sc[0] and weight=2"); $f3 = FEQ("${m3}/((3*x)**2) + $b - ${m3}*1/9 for x in (-1,0) using " . "color=$sc[0] and weight:2"); $f4 = FEQ("${m4}/((3*x)**2) + $b - ${m4}*1/9 for x in (0,1) using " . "color=$sc[0] and weight:2"); $f5 = FEQ("$b/5 for x in [1,1] using color=$sc[0] and weight=2"); $f6 = FEQ("${m1}*(x-3)+$c for x in (1,3] using color=$sc[0] and weight=2"); $f7 = FEQ("${m2}*(x-3)+$c for x in [3,4] using color=$sc[0] and weight=2"); $graph = init_graph(-3,-6,5,6,'axes'=>[0,0],'grid'=>[8,12]); ($f1Ref,$f2Ref,$f3Ref,$f4Ref,$f5Ref,$f6Ref,$f7Ref) = plot_functions($graph,$f1,$f2,$f3,$f4,$f5,$f6,$f7); TEXT(EV2(<<EOT)); Let \( f \) be the function below.$PAR EOT TEXT(image( insertGraph($graph) , height=>200, width=>200)); TEXT(EV2(<<EOT)); $BR $BR Use \{ helpLink('interval notation')\} to indicate where \( f(x) \) is continuous. If it is continuous on more than one interval, use $BITALICS U $EITALICS for union. You may click on the graph to make it larger. \<ans_rule(40)\> EOT ANS(interval_cmp("[-2,-1)U(-1,0)U(0,1)U(1,4]")); ENDDOCUMENT();